General Description

The MAXM17514 evaluation kit (EV kit) is a fully assembled and tested PCB that demonstrates the typical 4A application circuit of the MAXM17514. The device is a fixed-frequency, integrated inductor, step-down power module for low-voltage, low-power applications.

The EV kit provides a 1.5V output voltage from a 2.4V to 5.5V input range and delivers up to 4A output current while achieving greater than 91.2% efficiency. The EV kit operates at 1MHz switching frequency and has superior line and load-transient response. The EV kit also allows the evaluation of other adjustable output voltages from 0.75V to 3.6V by changing resistors R1 and R2.

Ordering Information appears at end of data sheet.

Features

- High Integration Solution/Integrated Shielded Inductor
- 2.4V to 5.5V Input Range
- Configured for 1.5V Output Voltage
- Adjustable Output Voltage Range (0.75V to 3.6V)
- 4A Output Current
- 91.2% Efficiency (Vin = 3.3V, Vout = 1.5V at 1.5A)
- 1MHz Switching Frequency
- Enable Input
- Power-Good Output Indicator (POK)
- Low-Profile, Surface-Mount Components
- Proven PCB Layout
- Fully Assembled and Tested
Quick Start

Recommended Equipment
- MAXM17514 EV kit
- 2.4V to 5.5V DC power supply (V\textsubscript{IN})
- 5V DC power supply (V\textsubscript{CC})
- Dummy load capable of sinking 4A
- Digital multimeter (DMM)
- 100MHz dual-trace oscilloscope

Procedure
The EV kit is fully assembled and tested. Follow the steps below to verify board operation. Caution: Do not turn on the power supply until all connections are completed.
1) Ensure that the circuit is connected correctly to the supplies and dummy load prior to applying any power.
2) Verify that a shunt is installed across jumper JU1.
3) Enable the power supply (V\textsubscript{IN} = 5V)
4) Observe the 1.5V output with the DMM and/or oscilloscope. Look at the EP2 switching node while varying the load current.

Detailed Description of Hardware

Input Supply Voltage
The MAXM17514 EV kit can operate from a minimum 4.5V single DC power supply at V\textsubscript{IN} PCB pad with a shunt installed across JU1. The EV kit is also configured to power a lower input voltage at V\textsubscript{IN} PCB pad, which requires an additional 5V power supply at V\textsubscript{CC} PCB pad, a capacitor (C4) to be installed, and a connecting trace between V\textsubscript{IN} and V\textsubscript{CC} (next to R3’s footprint) to be cut. Table 1 lists all operating configurations of the EV kit at different input voltage sources. The electrolytic capacitor (C1) is required only when the V\textsubscript{IN} power supply is situated far from the MAXM17514 circuit. On the bottom layer, additional footprints of optional components are included to ease the board modification for different input/output configurations.

Enable Input
The EV kit features a 2-pin jumper (JU1) that selects the enable/disable control input. The shunt is installed across JU1 to enable the device and vice versa.

Switching Frequency (FREQ)
The EV kit features a PWM mode switching frequency. The switching frequency is fixed at 1MHz.

Programming the Output Voltage
The EV kit includes a default output programmed at 1.5V and also produces an adjustable 0.75V to 3.6V output voltage by connecting FB to a resistive divider. To obtain an output voltage other than the default programmed output, simply modify the R1 and R2 resistors with values according to the following equation:

\[
V_{out} = V_{FB} \left(1 + \frac{R1}{R2}\right)
\]

where \(V_{FB} = 0.765V\). Output capacitance selection changes are required for an output voltage greater than 2V or capacitor temperatures above 105°C. Refer to the MAXM17514 data sheet for output capacitance selection.

Table 1. Jumper JU1 Functions

<table>
<thead>
<tr>
<th>SHUNT (JU1) POSITION</th>
<th>V\textsubscript{IN}/V\textsubscript{CC} RANGE</th>
<th>REGULATOR OUTPUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installed</td>
<td>(V_{IN} = 4.5V) to 5.5V (V_{CC} = V_{IN})</td>
<td>Enabled</td>
</tr>
<tr>
<td>Installed</td>
<td>(V_{IN} = 2.4V) to 5.5V (V_{CC} = V_{IN})</td>
<td>Enabled</td>
</tr>
<tr>
<td>Not installed*</td>
<td>(V_{IN} = 2.4V) to 5.5V (V_{CC} = V_{IN})</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

*The thin trace connecting \(V_{IN}\) and \(V_{CC}\) (next to R3’s footprint) must be cut before applying the additional power supply to the \(V_{CC}\) PCB pad.
Typical Operating Characteristics

\(V_{CC} = 5\,V, \, V_{IN} = 3.3\,V\) to 5\,V, \(V_{OUT} = 1.5\,V, \, I_{OUT} = 0–4\,A, \, T_{A} = +25^\circ\,C, \) unless otherwise noted.

EFFICIENCY

<table>
<thead>
<tr>
<th>OUTPUT CURRENT (mA)</th>
<th>EFFICIENCY (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>1000</td>
<td>100</td>
</tr>
<tr>
<td>10000</td>
<td>100</td>
</tr>
</tbody>
</table>

\(V_{IN} = 3.3\,V\)

\(V_{IN} = 5\,V\)

\(V_{OUT} = 1.5\,V\)

\(V_{CC} = 5\,V\)

LOAD CURRENT TRANSIENT RESPONSE

\(V_{IN} = 5\,V, \, V_{OUT} = 1.5\,V, \, I_{OUT} = 2\,A\) TO 4\,A

STARTUP WAVEFORM

\(V_{IN} = 5\,V, \, V_{OUT} = 1.5\,V, \, I_{OUT} = 4\,A\)

SHUTDOWN WAVEFORM

\(V_{IN} = 5\,V, \, V_{OUT} = 1.5\,V, \, I_{OUT} = 4\,A\)
Component Suppliers

<table>
<thead>
<tr>
<th>SUPPLIER</th>
<th>PHONE</th>
<th>WEBSITE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keystone Electronics Corp.</td>
<td>800-221-5510</td>
<td>www.keyelco.com</td>
</tr>
<tr>
<td>Lite-On, Inc.</td>
<td>408-946-4873</td>
<td>www.liteon.com</td>
</tr>
<tr>
<td>Murata Americas</td>
<td>800-241-6574</td>
<td>www.murataamericas.com</td>
</tr>
<tr>
<td>Panasonic Corp.</td>
<td>800-344-2112</td>
<td>www.panasonic.com</td>
</tr>
<tr>
<td>TDK Corp.</td>
<td>847-803-6100</td>
<td>www.component.tdk.com</td>
</tr>
</tbody>
</table>

Note: Indicate that you are using the MAXM17514 when contacting these component suppliers.

Component List and Schematic
Refer to the following files attached to this data sheet for component information and schematic:
- MAXM17514_EV_BOM.xls
- MAXM17514_EV_Schematic.pdf
MAXM17514 Evaluation Kit
Evaluates: MAXM17514, 4A Integrated Power Module

Figure 1. MAXM17514 EV Kit Component Placement Guide—Component Side

Figure 2. MAXM17514 EV Kit Component Placement Guide—Solder Side

Figure 3. MAXM17514 EV Kit PCB Layout—Component Side
MAXM17514 Evaluation Kit

Evaluates: MAXM17514, 4A Integrated Power Module

Ordering Information

<table>
<thead>
<tr>
<th>PART</th>
<th>TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX17514EVKIT#</td>
<td>EV Kit</td>
</tr>
</tbody>
</table>

#Denotes RoHS compliant.
Revision History

<table>
<thead>
<tr>
<th>REVISION NUMBER</th>
<th>REVISION DATE</th>
<th>DESCRIPTION</th>
<th>PAGES CHANGED</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4/15</td>
<td>Initial release</td>
<td>—</td>
</tr>
</tbody>
</table>

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated’s website at www.maximintegrated.com.

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time.

Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc. © 2015 Maxim Integrated Products, Inc.