General Description
The MAXM15462 3.3V output evaluation kit (EV kit) provides a proven design to evaluate the MAXM15462 high-voltage, high-efficiency, synchronous step-down DC-DC module. The EV kit is programmed to deliver 3.3V output for loads up to 300mA. The EV kit features an adjustable input undervoltage lockout, selectable mode, and open-drain RESET signal. The MAXM15462 data sheet provides a complete description of the module that should be read in conjunction with this EV kit data sheet prior to modifying the demo circuit. For full module features, benefits and parameters, refer to the MAXM15462 data sheet.

Features
- Highly Integrated Solution
- Wide 4.5V to 42V Input Range
- Programmed 3.3V Output, Delivers Up To 300mA Output Current
- High 80.5% Efficiency \(V_{\text{IN}} = 24V, V_{\text{OUT}} = 3.3V \text{ at } 150mA\)
- 500kHz Switching Frequency
- ENABLE/UVLO Input, Resistor-Programmable UVLO Threshold
- PFM Feature for Better Light-Load Efficiency
- Fixed Internal 4.1ms Soft-Start Time
- RESET Output, with Pullup Resistor to \(V_{\text{CC}}\)
- Overcurrent and Overtemperature Protection (OCP and OTP)
- Low-Profile, Surface-Mount Components
- Proven PCB Layout
- Fully Assembled and Tested
- Complies with CISPR22(EN55022) Class B Conducted and Radiated Emissions

Quick Start
Recommended Equipment
- One 4.5V to 42V DC, 300mA power supply
- 1W resistive load with 300mA sink capacity
- Four digital multimeters (DMM)
- MAXM15462EVKIT#

Equipment Setup and Test Procedure
The EV kit is fully assembled and tested. Follow the steps below to verify the board operation.

Caution: Do not turn on power supply until all connections are completed.

1) Set the power supply at a voltage between 4.5V and 42V. Then, disable the power supply.
2) Connect the positive terminal of the power supply to the VIN PCB pad and the negative terminal to the nearest GND PCB pad. Connect the positive terminal of the 300mA load to the VOUT PCB pad and the negative terminal to the nearest GND PCB pad.
3) Connect the DVM (DMM in voltage-measurement mode) across the VOUT PCB pad and the nearest GND PCB pad.
4) Verify that shunt is not installed on jumper J1 (see Table 1 for details).
5) Turn on the DC power supply.
6) Enable the load.
7) Verify that the DVM displays 3.3V.

Ordering Information appears at end of data sheet.
Detailed Description

The MAXM15462 EV kit is designed to demonstrate salient features of MAXM15462 power module. The EV kit includes an EN/UVLO PCB pad, and jumper J1, to enable the output at a desired input voltage. Jumper J2 allows selection of either PWM or PFM mode of operation based on light-load performance requirements. An additional RESET pad is available for monitoring if the converter output voltage is in regulation.

Output Capacitor Selection

X7R ceramic output capacitors are preferred due to their stability over temperature in industrial applications. The required output capacitor (C5) for 3.3V output is selected from Table 1 of the MAXM15462 data sheet as 10µF/6.3V.

Adjusting Output Voltage

The MAXM15462 supports an adjustable output-voltage range, from 0.9V to 5V, using a feedback resistive divider from \(V_{OUT} \) to FB. Output voltage can be programmed using the values given in Table 1 of the MAXM15462 data sheet. For 3.3V output, R3 is chosen as 200kΩ, and R4 is chosen as 75kΩ.

Enable/Undervoltage-Lockout (EN/UVLO) Programming

The MAXM15462 offers an adjustable input undervoltage-lockout feature. In this EV kit, for normal operation, leave jumper J1 open. When J1 is left open, the MAXM15462 is enabled when the input voltage rises above 5.4V. To disable MAXM15462, install a jumper across pins 2-3 on J1. See Table 1 for J1 settings. A potential divider formed by R1 and R2 sets the input voltage (\(V_{IN} \)) at which the module is enabled. The value of resistor R1 is chosen to be 2.2MΩ, and R2 is calculated using the following equation:

\[
R_2 = \frac{R_1 \times 1.215}{(V_{IN} - 1.215)}
\]

where R1 and R2 are in kΩ.

For MAXM15462 to turn on at 5.4V input, the Resistor R2 is calculated to be 634kΩ.

Input Capacitor Selection

The input capacitor serves to reduce the current peaks drawn from the input power supply and reduces switching frequency ripple at the input. The input capacitance must be greater than or equal to the value given in Table 1 of MAXM15462 data sheet. Input capacitor C3 is chosen to be 1µF/50V.

Electro-Magnetic Interference (EMI)

Compliance to conducted emissions (CE) standards requires an EMI filter at the input of a switching power converter. The EMI filter attenuates high-frequency currents drawn by the switching power converter, and limits the noise injected back into the input power source.

Use of EMI filter components as shown in Figure 1 in conjunction with the schematic results in lower conducted emissions, below CISPR22 Class B limits. The MAXM15462 EV kit PCB layout is also designed to limit radiated emissions from switching nodes of the power converter, resulting in radiated emissions below CISPR22 Class B limits.

Hot-Plug-In and Long Input Cables

The MAXM15462 EV kit PCB provides an optional electrolytic capacitor (C2, 4.7µF/50V) to dampen input voltage peaks and oscillations that can arise during hot-plug-in and/or due to long input cables. This capacitor limits the peak voltage at the input of the MAXM15462 power module, when the EV kit is powered directly from a precharged capacitive source or an industrial backplane PCB. Long input cables, between input power source and the EV kit circuit can cause input-voltage oscillations due to the inductance of the cables. The equivalent series resistance (ESR) of the electrolytic capacitor helps damp out the oscillations caused by long input cables. Further, capacitor C1 (0.1µF/50V), placed near the input of the board, helps in attenuating high frequency noise.

Table 1. UVLO Enable/Disable Configuration (J1)

<table>
<thead>
<tr>
<th>POSITION</th>
<th>EN/UVLO PIN</th>
<th>MAXM15462_OUTPUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Installed*</td>
<td>Connected to the center node of resistor-divider R1 and R2.</td>
<td>Programmed to startup at desired input-voltage level.</td>
</tr>
<tr>
<td>1-2</td>
<td>Connected to (V_{IN})</td>
<td>Enabled if (V_{IN}) is greater than (V_{IN(MIN)}).</td>
</tr>
<tr>
<td>2-3</td>
<td>Connected to GND</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

*Default position
Mode of Operation
The MAXM15462 features PFM mode of operation to increase the efficiency at light-load condition. If the MODE pin is left unconnected during powerup, the module operates in PFM mode at light loads. If the MODE pin is connected to GND during power-up, the part operates in constant-frequency PWM mode at all loads. See Table 2 for J2 settings.

Internal LDO
An internal regulator provides a 5V nominal supply to power the internal functions of the module. The output of the linear regulator \(V_{CC} \) should be bypassed with a 1µF capacitor C4 to GND.

Table 2. Mode of Operation (J2)

<table>
<thead>
<tr>
<th>POSITION</th>
<th>MODE PIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>Operates in PWM mode.</td>
</tr>
<tr>
<td>Not Installed*</td>
<td>Operates in PFM mode at light-load conditions.</td>
</tr>
</tbody>
</table>

*Default position

EV Kit Performance Report

Figure 1. EMI Filter Components

Table 2. Mode of Operation (J2)

<table>
<thead>
<tr>
<th>POSITION</th>
<th>MODE PIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>Operates in PWM mode.</td>
</tr>
<tr>
<td>Not Installed*</td>
<td>Operates in PFM mode at light-load conditions.</td>
</tr>
</tbody>
</table>

*Default position
Evaluates: MAXM15462 3.3V Output-Voltage Application

MAXM15462 3.3V Output Evaluation Kit

EV Kit Performance Report (continued)

OUTPUT-VOLTAGE RIPPLE
(VIN = 24V, VOUT = 3.3V, FULL LOAD, PWM MODE)

LOAD TRANSIENT RESPONSE
VIN = 24V, VOUT = 3.3V, PFM MODE
(LOAD CURRENT STEPPED FROM 5mA TO 150mA)

OUTPUT-VOLTAGE vs. LOAD CURRENT
(VOUT = 3.3V, PWM MODE)

OUTPUT-VOLTAGE vs. LOAD CURRENT
(VOUT = 3.3V, PFM MODE)

OUTPUT-VOLTAGE vs. INPUT VOLTAGE
(VOUT = 3.3V, PWM MODE)

LOAD TRANSIENT RESPONSE
VIN = 24V, VOUT = 3.3V, PWM MODE
(LOAD CURRENT STEPPED FROM 150mA TO 300mA)

BODE PLOT
(VIN = 24V, VOUT = 3.3V, FULL LOAD, PWM MODE)

CONDUCTED EMISSION PLOT
(EMI FILTER: C6 = 0.1µF, C7, C8, C9 = OPEN, L1 = SHORT)

RADIATED EMISSION PLOT
(C6 = 0.1µF, C7, C8, C9 = OPEN, L1 = SHORT)

www.maximintegrated.com

Maxim Integrated | 4
MAXM15462 3.3V Output Evaluation Kit

Evaluates: MAXM15462 3.3V Output-Voltage Application

Ordering Information

<table>
<thead>
<tr>
<th>PART</th>
<th>TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAXM15462EVKIT#</td>
<td>EV Kit</td>
</tr>
</tbody>
</table>

#Denotes RoHS compliant.

Component Suppliers

<table>
<thead>
<tr>
<th>SUPPLIER</th>
<th>WEBSITE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Murata Americas</td>
<td>www.murata.com</td>
</tr>
<tr>
<td>NEC TOKIN America, Inc.</td>
<td>www.nec-tokinamerica.com</td>
</tr>
<tr>
<td>Panasonic Corp.</td>
<td>www.panasonic.com</td>
</tr>
<tr>
<td>SANYO Electric Co., Ltd.</td>
<td>www.sanyodevice.com</td>
</tr>
<tr>
<td>TDK Corp.</td>
<td>www.component.tdk.com</td>
</tr>
<tr>
<td>TOKO America, Inc.</td>
<td>www.tokoam.com</td>
</tr>
</tbody>
</table>

Note: Indicate that you are using the MAXM15462 when contacting these component suppliers.

MAXM15462 3.3V EV Kit Bill of Materials

<table>
<thead>
<tr>
<th>ITEM</th>
<th>QTY</th>
<th>DESIGNATION</th>
<th>Description</th>
<th>Manufacturer Partnumber-1</th>
<th>Manufacturer Partnumber-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>C1</td>
<td>0.1µF±10%,50V, X7R ceramic capacitor (0603)</td>
<td>SAMSUNG ELECTRONICS CL10B104KB8NFNC</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>C2</td>
<td>4.7µF±20%,50V, Aluminium Capacitor</td>
<td>NICHICON U J01H4R7MCJ</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>C3</td>
<td>1µµF±10%,50V, X7R ceramic capacitor (0805)</td>
<td>MURATA GRM21BR71H105KA12</td>
<td>TDK C2012X7R1H105K085AC</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>C4</td>
<td>1µµF±10%,16V, X7R ceramic capacitor (0603)</td>
<td>MURATA GRM18BR71C105K4A12</td>
<td>TDK C1608X7R1C105K</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>C5</td>
<td>10µµF±10%,6.3V, X7R ceramic capacitor (1206)</td>
<td>MURATA GRM31CR701J06K</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>C6</td>
<td>OPEN (OPTIONAL : 0.1µF±10%,50V, X7R ceramic capacitor (0603))</td>
<td>Murata GRM31BR71H104KA9</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>R1</td>
<td>2.2MΩ ±1% resistor (0402)</td>
<td>VISHAY DALE CRCW04022M20FK</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>R2</td>
<td>634kΩ ±1% resistor (0402)</td>
<td>VISHAY DALE CRCW0402634KFK</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>R3</td>
<td>100Ω ±1% resistor (0402)</td>
<td>VISHAY DALE CRCW0402100FK</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>R4</td>
<td>75Ω ±1% resistor (0402)</td>
<td>VISHAY DALE CRCW040275K0PF</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>R5</td>
<td>100Ω ±1% resistor (0402)</td>
<td>VISHAY DALE CRCW0402100FK</td>
<td>YAGEO PHICOMP RC0402FR-07100KL</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>U1</td>
<td>MAXM15462, 10-pin micro-SLIC Power Module</td>
<td>MAXIM MAXM15462AWMB+T</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>L1</td>
<td>OPTIONAL : 82µH Shielded Wirewound Inductor(2016)</td>
<td>Murata L0QJ0MN4820MGR6L</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>C7</td>
<td>OPTIONAL : 0.1µF±10%,50V, X7R ceramic capacitor (0603)</td>
<td>Murata GRM18BR71H105KA9</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>C8</td>
<td>OPTIONAL : 0.47µF±10%,50V, X7R ceramic capacitor (0805)</td>
<td>Murata GRM21BR71H474K4A88</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>C9</td>
<td>OPTIONAL : 1µµF±10%,50V, X7R ceramic capacitor (0805)</td>
<td>Murata GRM21BR71H105KA12</td>
<td></td>
</tr>
</tbody>
</table>
MAXM15462 3.3V Output Evaluation Kit

Evaluates: MAXM15462 3.3V Output-Voltage Application

MAXM15462 3.3V EV Kit Schematic
MAXM15462 3.3V Output Evaluation Kit

Evaluates: MAXM15462 3.3V Output-Voltage Application

MAXM15462 3.3V EV Kit PCB Layout Diagrams

MAXM15462 EV Kit PCB Layout—Silk Top

MAXM15462 EV Kit PCB Layout—Top Layer
MAXM15462 3.3V EV Kit PCB Layout Diagrams (continued)

MAXM15462 EV Kit PCB Layout—Layer 2 Ground

MAXM15462 EV Kit PCB Layout—Layer 3 Power
MAXM15462 3.3V EV Kit PCB Layout—Bottom Layer
Revision History

<table>
<thead>
<tr>
<th>REVISION NUMBER</th>
<th>REVISION DATE</th>
<th>DESCRIPTION</th>
<th>PAGES CHANGED</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10/17</td>
<td>Initial release</td>
<td>—</td>
</tr>
<tr>
<td>1</td>
<td>11/18</td>
<td>Updated Features, Adjusting Output Voltage, Hot Plug-In and Long Input Cables, and Bill of Materials sections; added TOC11, TOC12, Figure 1, and Electro-Magnetic Interference (EMI) section.</td>
<td>1–2, 4–5</td>
</tr>
</tbody>
</table>