General Description

The MAX9945 operational amplifier features an excellent combination of low operating power and low input voltage noise. In addition, MOS inputs enable the MAX9945 to feature low input bias currents and low input current noise. The device accepts a wide supply voltage range from 4.75V to 38V and draws a low 400µA quiescent current. The MAX9945 is unity-gain stable and is capable of rail-to-rail output voltage swing.

The MAX9945 is ideal for portable medical and industrial applications that require low noise analog front-ends for performance applications such as photodiode trans-impedance and chemical sensor interface circuits.

The MAX9945 is available in both an 8-pin µMAX® and a space-saving, 6-pin TDFN package, and is specified over the automotive operating temperature range (-40°C to +125°C).

Applications

- Medical Pulse Oximetry
- Photodiode Sensor Interface
- Industrial Sensors and Instrumentation
- Chemical Sensor Interface
- High-Performance Audio Line Out
- Active Filters and Signal Processing

Features

- +4.75V to +38V Single-Supply Voltage Range
- ±2.4V to ±19V Dual-Supply Voltage Range
- Rail-to-Rail Output Voltage Swing
- 400µA Low Quiescent Current
- 50fA Low Input Bias Current
- 1fA/√Hz Low Input Current Noise
- 15nV/√Hz Low Noise
- 3MHz Unity-Gain Bandwidth
- Wide Temperature Range from -40°C to +125°C
- Available in Space-Saving, 6-Pin TDFN Package (3mm x 3mm)

Ordering Information

<table>
<thead>
<tr>
<th>PART</th>
<th>TEMP RANGE</th>
<th>PIN-PACKAGE</th>
<th>TOP MARK</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX9945ATT+</td>
<td>-40°C to +125°C</td>
<td>6 TDFN-EP*</td>
<td>AUE</td>
</tr>
<tr>
<td>MAX9945AUA+</td>
<td>-40°C to +125°C</td>
<td>8 µMAX</td>
<td>—</td>
</tr>
</tbody>
</table>

*EP = Exposed pad.

µMAX is a registered trademark of Maxim Integrated Products, Inc.

Typical Operating Circuit
38V, Low-Noise, MOS-Input, Low-Power Op Amp

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (VCC to VEE)-0.3V to +40V
IN+, IN-, OUT Voltage(VEE - 0.3V) to (VCC + 0.3V)
IN+ to IN- ...±12V
OUT Short Circuit to Ground Duration10s
Continuous Input Current into Any Pin±20mA
Continuous Power Dissipation (TA = +70°C)
6-Pin TDFN-EP (derate 23.8mW/°C above +70°C) ..1904.8mW
8-Pin µMAX (derate 4.8mW/°C above +70°C)
Multilayer Board ..387.8mW
Operating Temperature Range-40°C to +125°C
Junction Temperature ...+150°C
Storage Temperature Range-65°C to +150°C
Lead Temperature (soldering, 10s)+300°C
Soldering Temperature ...+260°C

PACKAGE THERMAL CHARACTERISTICS (Note 1)

TDFN-EP
Junction-to-Ambient Thermal Resistance (θJA)42°C/W
Junction-to-Case Thermal Resistance (θJC)9°C/W
µMAX
Junction-to-Ambient Thermal Resistance (θJA)206.3°C/W
Junction-to-Case Thermal Resistance (θJC)42°C/W

Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.

Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

(VCC = +15V, VEE = -15V, VIN+ = VIN-, VGH = 0V, ROUT = 100kΩ to GND, TA = -40°C to +125°C, typical values are at TA = +25°C, unless otherwise noted.) (Note 2)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC ELECTRICAL CHARACTERISTICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Voltage Range</td>
<td>VIN+, VIN-</td>
<td>Guaranteed by CMRR</td>
<td>TA = +25°C</td>
<td>VEE</td>
<td>VCC - 1.2</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TANA = TMIN to TMAX</td>
<td>VEE</td>
<td>VCC - 1.4</td>
<td></td>
</tr>
<tr>
<td>Input Offset Voltage</td>
<td>VOS</td>
<td>TA = +25°C</td>
<td>±0.6</td>
<td>±5</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TANA = TMIN to TMAX</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Offset Voltage Drift</td>
<td>VOS - TC</td>
<td>-40°C ≤ TA ≤ +25°C</td>
<td>2</td>
<td>150</td>
<td>fA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-40°C ≤ TA ≤ +70°C</td>
<td></td>
<td>12</td>
<td>pA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-40°C ≤ TA ≤ +85°C</td>
<td></td>
<td>55</td>
<td>pA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-40°C ≤ TA ≤ +125°C</td>
<td></td>
<td>1.9</td>
<td>nA</td>
<td></td>
</tr>
<tr>
<td>Input Bias Current (Note 3)</td>
<td>IB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common-Mode Rejection Ratio</td>
<td>CMRR</td>
<td>VCM = VEE to VCC - 1.2V, TA = +25°C</td>
<td>78</td>
<td>94</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>VCM = VEE to VCC - 1.4V, TA = TMIN to TMAX</td>
<td>78</td>
<td>94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Open-Loop Gain</td>
<td>AOL</td>
<td>VEE + 0.3V ≤ VOUT ≤ VCC - 0.3V, ROUT = 100kΩ to GND</td>
<td>110</td>
<td>130</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>VEE + 0.75V ≤ VOUT ≤ VCC - 0.75V, ROUT = 10kΩ to GND</td>
<td>110</td>
<td>130</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Short-Circuit Current</td>
<td>ISC</td>
<td></td>
<td></td>
<td>25</td>
<td>mA</td>
<td></td>
</tr>
</tbody>
</table>

Note 2: Additional specifications and limitations are provided in the data sheet.
38V, Low-Noise, MOS-Input, Low-Power Op Amp

ELECTRICAL CHARACTERISTICS (continued)

(\(V_{CC} = +15V, V_{EE} = -15V, V_{IN+} = V_{IN-} = V_{GND} = 0V, R_{OUT} = 100k\Omega \) to GND, TA = -40°C to +125°C, typical values are at TA = +25°C, unless otherwise noted.) (Note 2)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Voltage Low</td>
<td>VOL</td>
<td>(R_{OUT} = 10k\Omega) to GND</td>
<td>(T_A = T_{MIN}) to (T_{MAX})</td>
<td>(V_{EE} + 0.26)</td>
<td>(V_{EE} + 0.45)</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(R_{OUT} = 100k\Omega) to GND</td>
<td>(T_A = T_{MIN}) to (T_{MAX})</td>
<td>(V_{EE} + 0.05)</td>
<td>(V_{EE} + 0.15)</td>
<td>V</td>
</tr>
<tr>
<td>Output Voltage High</td>
<td>VOH</td>
<td>(R_{OUT} = 10k\Omega) to GND</td>
<td>(T_A = T_{MIN}) to (T_{MAX})</td>
<td>(V_{CC} - 0.45)</td>
<td>(V_{CC} - 0.24)</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(R_{OUT} = 100k\Omega) to GND</td>
<td>(T_A = T_{MIN}) to (T_{MAX})</td>
<td>(V_{CC} - 0.15)</td>
<td>(V_{CC} - 0.03)</td>
<td>V</td>
</tr>
</tbody>
</table>

AC ELECTRICAL CHARACTERISTICS

- **Input Current-Noise Density** \(I_N \)
 \(f = 1kHz \)
 1 \(fA/\sqrt{Hz} \)

- **Input Voltage Noise** \(V_{NP-P} \)
 \(f = 0.1Hz \) to 10Hz
 2 \(\mu V_{P-P} \)

- **Input Voltage-Noise Density** \(V_N \)
 \(f = 100Hz \)
 25 \(nV/\sqrt{Hz} \)
 \(f = 1kHz \)
 16.5 \(nV/\sqrt{Hz} \)
 \(f = 10kHz \)
 15 \(nV/\sqrt{Hz} \)

- **Gain Bandwidth** \(GBW \)
 3 \(MHz \)

- **Slew Rate** \(SR \)
 2.2 \(V/\mu s \)

- **Capacitive Loading (Note 4)** \(C_{LOAD} \)
 No sustained oscillations
 120 \(pF \)

- **Total Harmonic Distortion** \(THD \)
 \(V_{OUT} = 4.5V_{P-P}, A_{V} = 1V/V, f = 10kHz, R_{OUT} = 10k\Omega \) to GND
 97 \(dB \)

POWER-SUPPLY ELECTRICAL CHARACTERISTICS

- **Power-Supply Voltage Range** \(V_{CC} - V_{EE} \)
 Guaranteed by PSRR, \(V_{EE} = 0V \)
 +4.75 \(V \)
 +38 \(V \)

- **Power-Supply Rejection Ratio** \(PSRR \)
 \(V_{CC} - V_{EE} = +4.75V \) to +38V
 82 \(dB \)
 100 \(dB \)

- **Quiescent Supply Current** \(I_{CC} \)
 \(T_A = +25°C \)
 400 \(\mu A \)
 700 \(\mu A \)
 \(T_A = T_{MIN} \) to \(T_{MAX} \)
 850 \(\mu A \)

Note 2: All devices are 100% production tested at \(T_A = +25°C \). All temperature limits are guaranteed by design.

Note 3: Guaranteed by design. \(I_{IN+} \) and \(I_{IN-} \) are internally connected to the gates of CMOS transistors. CMOS GATE leakage is so small that it is impractical to test in production. Devices are screened during production testing to eliminate defective units.

Note 4: Specified over all temperatures and process variation by circuit simulation.
Typical Operating Characteristics

\(V_{CC} = +15\,V, V_{EE} = -15\,V, V_{IN+} = V_{IN-} = V_{GND} = 0\,V, R_{OUT} = 100\,k\Omega\) to GND, \(T_A = -40^\circ\text{C}\) to \(+125^\circ\text{C}\), typical values are at \(T_A = +25^\circ\text{C}\), unless otherwise noted.

QUIESCENT SUPPLY CURRENT

vs. SUPPLY VOLTAGE AND TEMPERATURE

<table>
<thead>
<tr>
<th>SUPPLY VOLTAGE (V)</th>
<th>SUPPLY CURRENT (µA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>200</td>
</tr>
<tr>
<td>10</td>
<td>300</td>
</tr>
<tr>
<td>15</td>
<td>400</td>
</tr>
<tr>
<td>20</td>
<td>500</td>
</tr>
<tr>
<td>25</td>
<td>600</td>
</tr>
</tbody>
</table>

\(T_A = +125^\circ\text{C} \)
\(T_A = +25^\circ\text{C} \)
\(T_A = -40^\circ\text{C} \)

OUTPUT VOLTAGE SWING LOW

vs. TEMPERATURE

<table>
<thead>
<tr>
<th>TEMPERATURE (°C)</th>
<th>(\Delta V_{G, -V_EE}) (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-40</td>
<td>0.10</td>
</tr>
<tr>
<td>0</td>
<td>0.15</td>
</tr>
<tr>
<td>+10</td>
<td>0.20</td>
</tr>
<tr>
<td>+25</td>
<td>0.25</td>
</tr>
</tbody>
</table>

\(I_{SINK} = 0.1\,mA \)
\(I_{SINK} = 1.0\,mA \)

OUTPUT VOLTAGE SWING HIGH

vs. TEMPERATURE

<table>
<thead>
<tr>
<th>TEMPERATURE (°C)</th>
<th>(\Delta V_{CC, -V_OH}) (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-40</td>
<td>0.10</td>
</tr>
<tr>
<td>0</td>
<td>0.15</td>
</tr>
<tr>
<td>+10</td>
<td>0.20</td>
</tr>
<tr>
<td>+25</td>
<td>0.25</td>
</tr>
</tbody>
</table>

\(I_{SOURCE} = 0.1\,mA \)
\(I_{SOURCE} = 1.0\,mA \)

INPUT BIAS CURRENT

vs. TEMPERATURE

<table>
<thead>
<tr>
<th>TEMPERATURE (°C)</th>
<th>(I_{BIAST}) (pA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-40</td>
<td>10</td>
</tr>
<tr>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>+10</td>
<td>30</td>
</tr>
<tr>
<td>+25</td>
<td>40</td>
</tr>
<tr>
<td>+40</td>
<td>50</td>
</tr>
</tbody>
</table>

**INPUT VOLTAGE

0.1Hz TO 10Hz NOISE**

INPUT VOLTAGE-NOISE DENSITY

vs. FREQUENCY

<table>
<thead>
<tr>
<th>FREQUENCY (Hz)</th>
<th>(\text{INPV-ND (nV/√Hz)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>10,000</td>
<td>10,000</td>
</tr>
<tr>
<td>100,000</td>
<td>100,000</td>
</tr>
</tbody>
</table>

TOTAL HARMONIC DISTORTION

vs. FREQUENCY

\(V_{CC} - V_{EE} = 30\,V \)
\(4.5V_{P-P} \)
\(R_L = 10k\Omega \)

TOTAL HARMONIC DISTORTION + NOISE

vs. FREQUENCY

\(V_{CC} - V_{EE} = 30\,V \)
\(4.5V_{P-P} \)
\(R_L = 10k\Omega \)
38V, Low-Noise, MOS-Input, Low-Power Op Amp

Typical Operating Characteristics (continued)

(VCC = +15V, VEE = -15V, VIN+ = VIN- = VGND = 0V, ROUT = 100kΩ to GND, TA = -40°C to +125°C, typical values are at TA = +25°C, unless otherwise noted.)
38V, Low-Noise, MOS-Input, Low-Power Op Amp

Typical Operating Characteristics (continued)

(VCC = +15V, VEE = -15V, VIN+ = VIN- = VGROUND = 0V, ROUT = 100kΩ to GND, TA = -40°C to +125°C, typical values are at TA = +25°C, unless otherwise noted.)

OP-AMP STABILITY
vs. CAPACITIVE AND RESISTIVE LOADS

OUTPUT IMPEDANCE
vs. FREQUENCY

LARGE-SIGNAL RESPONSE
vs. FREQUENCY

LARGE SIGNAL-STEP RESPONSE

SMALL SIGNAL-STEP RESPONSE
Detailed Description

The MAX9945 features a combination of low input current and voltage noise, rail-to-rail output voltage swing, wide supply voltage range, and low-power operation. The MOS inputs on the MAX9945 make it ideal for use as transimpedance amplifiers and high-impedance sensor interface front-ends in medical and industrial applications. The MAX9945 can interface with small signals from either current-sources or high-output impedance voltage sources. Applications include photodiode pulse oximeters, pH sensors, capacitive pressure sensors, chemical analysis equipment, smoke detectors, and humidity sensors.

A high 130dB open-loop gain (typ) and a wide supply voltage range, allow high signal-gain implementations prior to signal conditioning circuitry. Low quiescent supply current makes the MAX9945 compatible with portable systems and applications that operate under tight power budgets. The combination of excellent THD, low voltage noise, and MOS inputs also make the MAX9945 ideal for use in high-performance active filters for data acquisition systems and audio equipment.

Low-Current, Low-Noise Input Stage

The MAX9945 features a MOS-input stage with only 50fA (typ) of input bias current and a low 1nA/√Hz (typ) input current-noise density. The low-frequency input voltage noise is a low 2µVp-p (typ). The input stage accepts a wide common-mode range, extending from the negative supply, VEE, to within 1.2V of the positive supply, VCC.

Pin Description

<table>
<thead>
<tr>
<th>PIN</th>
<th>NAME</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>OUT Amplifier Output</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>VEE Negative Power Supply. Bypass VEE with 0.1µF ceramic and 4.7µF electrolytic capacitors to quiet ground plane if different from VEE.</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>IN+ Noninverting Amplifier Input</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>IN- Inverting Amplifier Input</td>
</tr>
<tr>
<td>5</td>
<td>1, 5, 8</td>
<td>N.C. No Connection. Not internally connected.</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>VCC Positive Power Supply. Bypass VCC with 0.1µF ceramic and 4.7µF electrolytic capacitors to quiet ground plane or VEE.</td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>EP Exposed Pad (TDFN Only). Connect to VEE externally. Connect to a large copper plane to maximize thermal performance. Not intended as an electrical connection (TDFN only).</td>
</tr>
</tbody>
</table>

Rail-to-Rail Output Stage

The MAX9945 output stage swings to within 50mV (typ) of either power-supply rail with a 100kΩ load and provides a 3MHz GBW with a 2.2V/µs slew rate. The device is unity-gain stable, and unlike other devices with a low quiescent current, can drive a 120pF capacitive load without compromising stability.

Applications Information

High-Impedance Sensor Front Ends

High-impedance sensors can output signals of interest in either current or voltage form. The MAX9945 interfaces to both current-output sensors such as photodiodes and potentiostat sensors, and high-impedance voltage sources such as pH sensors.

For current-output sensors, a transimpedance amplifier is the most noise-efficient method for converting the input signal to a voltage. High-value feedback resistors are commonly chosen to create large gains, while feedback capacitors help stabilize the amplifier by canceling any zeros in the transfer function created by a highly capacitive sensor or cabling. A combination of low-current noise and low-voltage noise is important for these applications. Take care to calibrate out photodiode dark current if DC accuracy is important. The high bandwidth and slew rate also allows AC signal processing in certain medical photodiode sensor applications such as pulse oximetry.
For voltage-output sensors, a noninverting amplifier is typically used to buffer and/or apply a small gain to, the input voltage signal. Due to the extremely high impedance of the sensor output, a low input bias current with a small temperature variation is very important for these applications.

Power-Supply Decoupling

The MAX9945 operates from a +4.75V to +38V, VEE referenced power supply. Bypass the power-supply inputs VCC and VEE to a quiet copper ground plane, with a 0.1µF ceramic capacitor in parallel with a 4.7µF electrolytic capacitor, placed close to the leads.

Layout Techniques

A good layout is critical to obtaining high performance especially when interfacing with high-impedance sensors. Use shielding techniques to guard against parasitic leakage paths. For transimpedance applications, for example, surround the inverting input, and the traces connecting to it, with a buffered version of its own voltage. A convenient source of this voltage is the noninverting input pin. Pins 1, 5, and 8 on the µMAX package are unconnected, and can be connected to an analog common potential, or to the driven guard potential, to reduce leakage on the inverting input.

A good layout guard rail isolates sensitive nodes, such as the inverting input of the MAX9945 and the traces connecting to it (see Figure 1), from varying or large voltage differentials that otherwise occur in the rest of the circuit board. This reduces leakage and noise effects, allowing sensitive measurements to be made accurately.

Take care to also decrease the amount of stray capacitance at the op amp's inputs to improve stability. To achieve this, minimize trace lengths and resistor leads by placing external components as close as possible to the package. If the sensor is inherently capacitive, or is connected to the amplifier through a long cable, use a low-value feedback capacitor to control high-frequency gain and peaking to stabilize the feedback loop.
Input Differential Voltage Protection
During normal op-amp operation, the inverting and non-inverting inputs of the MAX9945 are at approximately the same voltage. The ±12V absolute maximum input differential voltage rating offers sufficient protection for most applications. If there is a possibility of exceeding the input differential voltage specification, in the presence of extremely fast input voltage transients or due to certain application-specific fault conditions, use external low-leakage pico-amp diodes and series resistors to protect the input stage of the amplifier (see Figure 2). The extremely low input bias current of the MAX9945 allows a wide range of input series resistors to be used. If low input voltage noise is critical to the application, size the input series resistors appropriately.

Chip Information
PROCESS: BiCMOS
38V, Low-Noise, MOS-Input, Low-Power Op Amp

Pin Configurations

TOP VIEW

µMAX

IN- 2
IN+ 3
VEE 4

N.C. 1

MAX9945

VCC 7
OUT 6

N.C. 8

TDFN

MAX9945

VCC 1
OUT 2
VEE 3

N.C. 4

µMAX
38V, Low-Noise, MOS-Input, Low-Power Op Amp

Package Information

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

<table>
<thead>
<tr>
<th>PACKAGE TYPE</th>
<th>PACKAGE CODE</th>
<th>OUTLINE NO.</th>
<th>LAND PATTERN NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 TDFN-EP</td>
<td>T633+2</td>
<td>21-0137</td>
<td>90-0058</td>
</tr>
<tr>
<td>8 µMAX</td>
<td>U8+1</td>
<td>21-0036</td>
<td>90-0092</td>
</tr>
</tbody>
</table>

38V, Low-Noise, MOS-Input, Low-Power Op Amp

Package Information (continued)

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a "+", ",#", or ",-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

<table>
<thead>
<tr>
<th>COMMON DIMENSIONS</th>
<th>PACKAGE VARIATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYMBOL</td>
<td>MIN.</td>
</tr>
<tr>
<td>A</td>
<td>0.70</td>
</tr>
<tr>
<td>D</td>
<td>2.90</td>
</tr>
<tr>
<td>E</td>
<td>2.90</td>
</tr>
<tr>
<td>A1</td>
<td>0.00</td>
</tr>
<tr>
<td>L</td>
<td>0.20</td>
</tr>
<tr>
<td>A2</td>
<td>0.25</td>
</tr>
<tr>
<td>k</td>
<td>0.25</td>
</tr>
<tr>
<td>A2</td>
<td>0.25</td>
</tr>
<tr>
<td>A2</td>
<td>0.25</td>
</tr>
</tbody>
</table>

NOTES:
1. ALL DIMENSIONS ARE IN mm. ANGLES IN DEGREES.
2. COPLANARITY SHALL NOT EXCEED 0.08 mm.
3. WARPAGE SHALL NOT EXCEED 0.10 mm.
4. PACKAGE LENGTH/PACKAGE WIDTH ARE CONSIDERED AS SPECIAL CHARACTERISTIC(S).
5. DRAWING CONFORMS TO JEDEC MO229, EXCEPT DIMENSIONS "D2" AND "E2", AND T1433-1 & T1433-2.
6. "N" IS THE TOTAL NUMBER OF LEADS.
7. NUMBER OF LEADS SHOWN ARE FOR REFERENCE ONLY.
8. MARKING IS FOR PACKAGE ORIENTATION REFERENCE ONLY.
9. ALL DIMENSIONS APPLY TO BOTH LEADED (>) AND PbFREE (+) PKG. CODES.

-DRAWING NOT TO SCALE-
38V, Low-Noise, MOS-Input, Low-Power Op Amp

Package Information (continued)

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a "+", ",", or "," in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

Package Outline, BL uMAX/µSOP

INCHES	**MILLIMETERS**
A | 0.043 | 1.10
A1 | 0.002 | 0.006 | 0.05 | 0.15
A2 | 0.030 | 0.037 | 0.75 | 0.95
b | 0.010 | 0.014 | 0.25 | 0.36
c | 0.005 | 0.007 | 0.13 | 0.18
D | 0.114 | 0.122 | 2.90 | 3.10
e | 0.0256 BSC | 0.65 BSC
E | 0.114 | 0.122 | 2.90 | 3.10
H | 0.188 | 0.198 | 4.78 | 5.03
L | 0.016 | 0.026 | 0.41 | 0.66
α | 0° | 6° | 0° | 6°
S | 0.0207 BSC | 0.5250 BSC
PKG. CODES:
UB-1; UB-3; U8CN-1

NOTES:
1. D&W DO NOT INCLUDE MOLD FLASH.
2. MOLD FLASH OR PROTRUSIONS NOT TO EXCEED 0.15MM (.006").
3. CONTROLLING DIMENSION: MILLIMETERS.
4. COMPLIES TO JEDEC MO-167, LATEST REVISION, VARIATION AA.
5. MARKING ShOWN IS FOR PKG. ORIENTATION ONLY.
6. ALL DIMENSIONS APPLY TO BOTH LEADED (-) AND PbFREE (+) PKG. CODES.

- DRAWING NOT TO SCALE -
38V, Low-Noise, MOS-Input, Low-Power Op Amp

Revision History

<table>
<thead>
<tr>
<th>REVISION NUMBER</th>
<th>REVISION DATE</th>
<th>DESCRIPTION</th>
<th>PAGES CHANGED</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2/09</td>
<td>Initial release</td>
<td>—</td>
</tr>
<tr>
<td>1</td>
<td>12/10</td>
<td>Updated Input Bias Current spec in the Electrical Characteristics table and updated Note 3</td>
<td>2, 3</td>
</tr>
</tbody>
</table>