General Description

The MAX7461 single-channel loss-of-sync alarm (LOS) provides composite video sync detection in NTSC, PAL, and SECAM standard-definition television (SDTV) systems. The MAX7461’s advanced detection circuitry delivers robust performance by preventing false loss-of-sync alarms due to noise. The device accepts an AC-coupled composite (CVBS), luma (Y), or any other video signal with sync, and outputs a logic-level signal. The open-drain LOS output is low when no sync is detected and high impedance when sync is detected. The device operates from a single +5V supply.

The MAX7461 is available in a 5-pin SOT23 package and is specified for operation over the -40°C to +85°C temperature range.

Features

♦ Accepts CVBS, Y, or Any Other Video with Sync
♦ Loss-of-Sync Alarm Output
♦ Robust Performance in Noisy Environments
♦ Wire-OR Alarm Output
♦ NTSC, PAL, and SECAM
♦ Small 5-Pin SOT23 Package

Applications

Security Systems
Consumer Electronics

Ordering Information

<table>
<thead>
<tr>
<th>PART</th>
<th>TEMP RANGE</th>
<th>PIN-PACKAGE</th>
<th>PACKAGE CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX7461EUK</td>
<td>-40°C to +85°C</td>
<td>5 SOT23</td>
<td>U5-2</td>
</tr>
</tbody>
</table>

Functional Diagram
MAX7461
Loss-of-Sync Alarm

ABSOLUTE MAXIMUM RATINGS

- V_{CC} to GND: $-0.3V$ to $+6V$
- LOS to GND: $-0.3V$ to $+6V$
- IN to GND: $-0.3V$ to the lower of $+6V$ and $(V_{CC} + 0.3V)$
- Continuous Power Dissipation ($T_A = +70°C$)
 - 5-Pin SOT23-5 (derate 7.1mW/°C above $+70°C$): $571.0mW$
- Maximum Current Into Any Pin: $±50mA$

Continuous Power Dissipation (TA = +70°C)

- 5-Pin SOT23-5 (derate 7.1mW/°C above $+70°C$): $571.0mW$

Operating Temperature Range
- MAX7461EUK: $-40°C$ to $+85°C$

Storage Temperature Range
- $-65°C$ to $+150°C$

Lead Temperature (soldering, 10s)
- $+300°C$

Junction Temperature
- $+150°C$

Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

($V_{CC} = +4.5V$ to $+5.5V$, GND = 0, $C_{IN} = 0.1µF$, $R_O = 500Ω$, $T_A = -40°C$ to $+85°C$, unless otherwise noted. Typical values are at $T_A = +25°C$.)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC CHARACTERISTICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum Input Sync Height</td>
<td>V_{IN-MIN}</td>
<td>AC-coupled (Note 1)</td>
<td>105</td>
<td>130</td>
<td>mV P-P</td>
<td></td>
</tr>
<tr>
<td>Maximum Input Voltage</td>
<td>V_{IN-MAX}</td>
<td>AC-coupled</td>
<td>2.4</td>
<td></td>
<td>V P-P</td>
<td></td>
</tr>
<tr>
<td>LOS Release Time</td>
<td>t_{RT} (Note 2)</td>
<td></td>
<td>1.7</td>
<td>2.2</td>
<td>2.7</td>
<td>ms</td>
</tr>
<tr>
<td>LOS Detect Time</td>
<td>t_{DT} (Note 3)</td>
<td></td>
<td>1.9</td>
<td>3.4</td>
<td>4.9</td>
<td></td>
</tr>
<tr>
<td>DIGITAL CHARACTERISTICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Low Voltage</td>
<td>V_{OL}</td>
<td>$I_{SINK} = 10mA$</td>
<td></td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Logic High Leakage Current</td>
<td>I_{OLLEAK}</td>
<td></td>
<td>0.4</td>
<td></td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>POWER REQUIREMENTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supply Voltage</td>
<td>V_{CC}</td>
<td></td>
<td>4.5</td>
<td>5.0</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td>Supply Current</td>
<td>I_{CC}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Power-Supply Noise Immunity</td>
<td>V_{PSNI}</td>
<td>0 to 5MHz sinusoid on V_{CC} (Note 4)</td>
<td></td>
<td></td>
<td></td>
<td>200</td>
</tr>
</tbody>
</table>

Note 1: Minimum input sync height is the voltage above which LOS is guaranteed to be in high-impedance mode after the maximum LOS time-constant time.

Note 2: LOS release time is the time that the video input must be continuously present before LOS goes high (inactive state).

Note 3: The LOS detect time is the time that the video input must be continuously absent before LOS goes low (active state).

Note 4: The MAX7461 LOS output is accurate with a power-supply noise level below V_{PSNI}.
MAX7461
Loss-of-Sync Alarm

Typical Operating Characteristics

(V_{CC} = 5V, GND = 0, C_{IN} = 0.1\mu F, RO = 10k\Omega, T_A = +25^\circ C, unless otherwise noted.)
Detailed Description

The MAX7461 single-channel LOS alarm is ideal for any video system needing to verify the presence of a video source. The device accepts an AC-coupled CVBS, Y, or any video signal with sync, and pulls LOS low when no composite sync signal is detected for more than the LOS detect time (3.4ms, typ) at the input (IN).

Clamp

The MAX7461 features an input clamp that corrects any DC shift, on a line-by-line basis. The external AC-coupling capacitor provides DC isolation for the input.

Lowpass Filter

The MAX7461 integrates a lowpass filter for enhanced sync detection. The lowpass filter prevents false sync detection by reducing color burst, chroma, and noise.

Sync Detector/LOS Filter

The sync detector looks for sync pulses greater than the minimum sync voltage (0.13VP-P). If the detector does not detect any sync pulses for 3.4ms (typ), the LOS filter pulls LOS low. After detecting sync for at least 2.2ms (typ), the LOS filter returns LOS to a high-impedance state. LOS is an open-drain output. Connect a 1kΩ pullup resistor between LOS and VCC.

Power-On Reset (POR)

At power-up, LOS is pulled low and the MAX7461 checks for 2.2ms (typ) of valid sync pulses before releasing LOS. LOS remains high impedance while a valid sync signal is detected at the input.

Applications Information

Input Considerations

Use 0.1µF ceramic capacitors to AC-couple the input. The input cannot be DC-coupled. The input capacitor stores a DC level so that the video signal is clamped to an appropriate DC voltage for proper sync detection.

Power-Supply Bypassing

Careful PC board layout is important for optimal system performance. Do not use wire-wrapped boards or breadboards. When possible, use a multilayer board with a dedicated low-inductance ground plane and supply plane. Connect all GND inputs to a single ground plane and VCC to a single-supply plane. Bypass VCC to GND with a 0.1µF capacitor.

Wired-OR Application

The LOS open-drain output allows the MAX7461 to be used in wired-OR applications as shown in the typical application diagram of Figure 1.

Chip Information

PROCESS: BiCMOS
MAX7461
Loss-of-Sync Alarm

Figure 1. Wired-OR System
MAX7461
Loss-of-Sync Alarm

Figure 2. Video Security System

Package Information
For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”, “#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

<table>
<thead>
<tr>
<th>PACKAGE TYPE</th>
<th>PACKAGE CODE</th>
<th>OUTLINE NO.</th>
<th>LAND PATTERN NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 SOT23</td>
<td>US-2</td>
<td>21-0057</td>
<td>90-0174</td>
</tr>
</tbody>
</table>
MAX7461
Loss-of-Sync Alarm

Revision History

<table>
<thead>
<tr>
<th>REVISION NUMBER</th>
<th>REVISION DATE</th>
<th>DESCRIPTION</th>
<th>PAGES CHANGED</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>6/00</td>
<td>Initial release</td>
<td>—</td>
</tr>
<tr>
<td>1</td>
<td>4/13</td>
<td>Removed references for automotive applications</td>
<td>1, 4, 5</td>
</tr>
</tbody>
</table>