General Description

The MAX6819/MAX6820 are power-supply sequencers for dual-voltage microprocessors (µPs) and multivoltage systems. These devices monitor a primary supply voltage and enable/disable an external n-channel MOSFET switch for a secondary supply voltage. The MAX6819/MAX6820 control local component voltage sequencing when system power-on/power-off characteristics cannot be guaranteed (supplies come from a multivoltage system bus, silver box, or must be sequenced in different modes for components on the same board). These small power-supply sequencers improve system reliability.

The MAX6819/MAX6820 include an internal voltage reference/comparator with externally adjustable thresholds to monitor the primary power supply. When the primary supply is below the desired threshold, an external secondary supply MOSFET switch is disabled. When the primary supply exceeds the threshold, an internal charge pump is activated and the external MOSFET switch is enabled to connect the secondary supply to the load. The charge pump fully enhances the n-channel MOSFET switch to provide a very low RDS-ON voltage drop. The devices can be connected to support various supply sequencing priorities such as V/I/O before VCORE or VCORE before V/I/O.

The MAX6819 features a logic-driven EN input to enable/disable the external MOSFET drive and includes an internally fixed 200ms enable timeout period (VPRIMARY GOOD to VSECONDARY ENABLE). The MAX6820 allows the enable timeout period to be adjusted with a single external capacitor. Both devices are specified over the automotive temperature range (-40°C to +125°C) and are available in space-saving 6-pin SOT23 packages.

Applications

- Dual-Voltage Microprocessors
- Multivoltage Systems
- Digital Signal Processors
- Power PC™ Series Processors

Features

- Adjustable Primary Supply Voltage Monitor (Monitors Down to 0.62V)
- Internal Charge Pump to Enhance External Secondary Supply n-Channel MOSFET Switch
- Delay from Primary Supply Good to Secondary Supply Enabled
 - Factory Fixed 200ms (MAX6819)
 - Capacitor Adjustable (MAX6820)
- Logic Driven ENABLE Input (MAX6819)
- Immune to Short Voltage Transients
- Few External Components
- -40°C to +125°C Operating Temperature Range
- Small 6-Pin SOT23 Package

Ordering Information

<table>
<thead>
<tr>
<th>PART</th>
<th>TEMP RANGE</th>
<th>PIN-PACKAGE</th>
<th>TOP MARK</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX6819</td>
<td>-40°C to +125°C</td>
<td>6 SOT23-6</td>
<td>AARF</td>
</tr>
<tr>
<td>MAX6820</td>
<td>-40°C to +125°C</td>
<td>6 SOT23-6</td>
<td>AARG</td>
</tr>
</tbody>
</table>

Products must be ordered in 2,500 piece increments.
Devices are available in both leaded and lead-free packaging. Specify lead-free by replacing “-T” with “+T” when ordering.

Typical Operating Circuits

Pin Configurations

Pin Configurations and Typical Operating Circuits continued at end of data sheet.

Power PC is a trademark of IBM corp.
SOT23 Power-Supply Sequencers

ABSOLUTE MAXIMUM RATINGS

Referenced to GND

- VCC1, VCC2, EN: -0.3V to +6.0V
- SETV, SETD: -0.3V to the higher of (VCC1 + 0.3V) and (VCC2 + 0.3V)
- GATE: -0.3V to +12.0V
- Input Current/Output Current (all pins): -0.3V to +12.0V

Continuous Power Dissipation (TA = +70°C)

6-Pin SOT23 (derate 8.7mW/°C above +70°C).............696mW

Operating Temperature Range.........................-40°C to +125°C
Junction Temperature..+150°C
Storage Temperature Range..............................-65°C to +150°C
Lead Temperature (soldering 10s).......................+300°C

Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

(VCC1 or VCC2 > +2.125V to +5.5V, TA = -40°C to +125°C, unless otherwise specified. Typical values are at TA = +25°C.) (Note 1)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Voltage Range</td>
<td>VCC1, VCC2</td>
<td>(Note 2)</td>
<td>0.9</td>
<td>5.5</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>VCC1, VCC2 Supply Current</td>
<td>Icc</td>
<td>VCC1 = VCC2 = +3.3V</td>
<td>60</td>
<td>120</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>VCC1, VCC2 Disable Mode Current</td>
<td></td>
<td>VCC1 = VCC2 = +3.3V, EN = GND</td>
<td>20</td>
<td></td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>VCC1, VCC2 Slew Rate (Note 3)</td>
<td></td>
<td>MAX6819</td>
<td>6</td>
<td></td>
<td>V/s</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MAX6820 (Note 4)</td>
<td>1.2 / tDELAY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undervoltage Lockout (UVLO)</td>
<td>VUVLO</td>
<td></td>
<td>1.875</td>
<td>2.0</td>
<td>2.125</td>
<td>V</td>
</tr>
<tr>
<td>SETV Threshold</td>
<td>VTH</td>
<td>VSETV rising, enables GATE</td>
<td>0.602</td>
<td>0.618</td>
<td>0.634</td>
<td>V</td>
</tr>
<tr>
<td>SETV Input Current</td>
<td></td>
<td>(Note 3)</td>
<td>10</td>
<td>100</td>
<td>nA</td>
<td></td>
</tr>
<tr>
<td>SETV Threshold Hysteresis</td>
<td></td>
<td></td>
<td>-1</td>
<td></td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>SETV to GATE Delay</td>
<td>tDELAY</td>
<td>VSETV > VTH, VEN ≥ 2V (MAX6819)</td>
<td>140</td>
<td>200</td>
<td>280</td>
<td>ms</td>
</tr>
<tr>
<td>SETD Ramp Current (MAX6820)</td>
<td>ISSETD</td>
<td>VCC1 or VCC2 > +2.125V</td>
<td>400</td>
<td>500</td>
<td>600</td>
<td>nA</td>
</tr>
<tr>
<td>SETD Voltage (MAX6820)</td>
<td>VSETD</td>
<td>VCC1 or VCC2 > +2.125V</td>
<td>1.210</td>
<td>1.242</td>
<td>1.273</td>
<td>V</td>
</tr>
<tr>
<td>SETD Threshold Hysteresis (MAX6820)</td>
<td>VSETD falling</td>
<td></td>
<td>-62</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GATE Turn-On Time</td>
<td>tON</td>
<td>CGATE = 1500pF, VCC2 = +3.3V, VGATE = +7.8V</td>
<td>0.5</td>
<td>1.5</td>
<td>10</td>
<td>ms</td>
</tr>
<tr>
<td>GATE Turn-Off Time</td>
<td>tOFF</td>
<td>CGATE = 1500pF, VCC2 = +3.3V, VGATE = +0.5V</td>
<td></td>
<td>30</td>
<td>μs</td>
<td></td>
</tr>
<tr>
<td>GATE Voltage</td>
<td>VGATE</td>
<td>With respect to VCC2 (Note 2)</td>
<td>4.5</td>
<td>5.5</td>
<td>6.0</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rgate > 50MΩ to VCC2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>With respect to VCC2 (Note 2)</td>
<td>4.0</td>
<td>6.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rgate > 5MΩ to VCC2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN Input Voltage</td>
<td>VIL</td>
<td>VCC1 or VCC2 > +2.125V to +5.5V</td>
<td></td>
<td>0.4</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>VIH</td>
<td></td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note 1: 100% production tested at TA = +25°C. Specifications over temperature limit are guaranteed by design.

Note 2: Either VCC1 or VCC2 must be > 2.125V. The other supply can go to 0.

Note 3: Guaranteed by design, not production tested.

Note 4: tDELAY (s) = 2.48 × 10⁶ × CSET
SOT23 Power-Supply Sequencers

Typical Operating Characteristics

\(T_A = +25^\circ \text{C}, \text{unless otherwise noted.} \)

- **tDELAY vs. TEMPERATURE**
 - \(t_{\text{DELAY}} \) vs. TEMPERATURE (°C)

- **GATE TURN-ON TIME**
 - \(V_{\text{GATE}} \) 5V/div

- **GATE TURN-OFF TIME**
 - \(C_{\text{LOAD}} = 1500 \, \text{pF} \)

- **VCC2 vs. GATE VOLTAGE**
 - \(V_{\text{GATE}} \) 5V/div
 - \(V_{\text{CC1}} = +3.3 \, \text{V} \)
 - \(V_{\text{SETV}} = 1 \, \text{V} \)

- **VCC2 vs. GATE VOLTAGE**
 - \(V_{\text{GATE}} \) 5V/div
 - \(V_{\text{CC1}} = 0 \, \text{V} \)
 - \(V_{\text{SETV}} = 1 \, \text{V} \)
SOT23 Power-Supply Sequencers

Typical Operating Characteristics (continued)

(\(T_A = +25^\circ\text{C}\), unless otherwise noted.)

V\(_{\text{SETV}}\) vs. TEMPERATURE

SUPPLY CURRENT vs. TEMPERATURE

\(I_{CC2}\) vs. \(V_{CC2}\)

\(I_{CC2}\) vs. \(V_{CC2}\)
Many dual-supply processors or multivoltage boards require one power supply to rise to the proper operating voltage before another supply is applied. Improper sequencing can lead to chip latchup, incorrect device initiation, or long-term reliability degradation. If the various supply voltages are not locally generated (coming from a main system bus, an externally purchased silver box, or a nonsequenced power management chip), power-on and power-off sequencing can be difficult to control or predict. Supply loading can affect turn-on/turn-off times from board to board.

The MAX6819/MAX6820 provide proper local voltage sequencing in multisupply systems. The sequencers use an external n-channel MOSFET to switch the secondary supply to the load only when the primary supply is above a desired operating voltage threshold. The n-channel MOSFET operates in a default off mode when the primary supply is below the desired threshold or if neither supply exceeds the sequencer’s UVLO level.

When the primary supply voltage is above the set threshold, the external MOSFET is driven on. An internal charge pump fully enhances the external MOSFET by providing a gate-to-source voltage (Vgs) of +5.5V (typ). The charge pump fully enhances the MOSFET to yield a low drain-to-source impedance (Rds(ON)) for reduced switch voltage drop. The MOSFET is never driven on unless the sequencer can provide a minimum VGS enhancement, ensuring that the switch MOSFET never operates in its higher impedance linear range.

Either supply may act as the primary source, regardless of the voltage level, provided that VCC1 or VCC2 is greater than 2.125V (Figure 1 and Figure 2).
Applications Information

Adjusting tDELAY
The MAX6820 features a capacitor adjustable sequence delay. The adjustable delay provides power sequencing for a wide range of devices with different power-supply delay requirements. Connect a capacitor (CSET) between SETD and GND to adjust the delay time (Figure 2). Calculate the sequence delay time as follows:

\[t_{\text{DELAY}} (s) = 2.48 \times 10^6 \times C_{\text{SET}} \]

Setting Threshold Voltage at SETV
The threshold voltage is the minimum VCC1 voltage at which VCC2 turn-on is acceptable. To monitor voltages higher than the threshold voltage, connect external resistors as a voltage-divider to SETV, and calculate the minimum VCC turn-on voltage as follows:

\[R_1 = R_2 \left(\frac{V_{\text{TRIP}}}{V_{\text{TH}}} - 1 \right) \]

where \(V_{\text{TRIP}} \) is the minimum turn-on voltage at VCC1 and \(V_{\text{TH}} = 0.618V \) (Figure 2).

Since SETV input current is 10nA (typ), high value resistors can be used.

Selecting the Pass MOSFET
The external pass MOSFET is connected in series with the sequenced power-supply source. Since the load current and the MOSFET drain-to-source impedance (RDS) determine the voltage drop, the on characteristics of the MOSFET affect the load supply accuracy. The MAX6819/MAX6820 fully enhance the external MOSFET out of its linear range to ensure the lowest drain-to-source impedance. For highest supply accuracy/lowest voltage drop, select a MOSFET with an appropriate drain-to-source impedance for a gate-to-source bias of 4.5V to 6.0V.

Gate Drive Characteristics
The MAX6819/MAX6820 internal charge pump drives the n-channel MOSFET with a gate-to-source voltage (VGS) of 5.5V, ensuring low MOSFET on-resistance (RDS(ON)). The charge pump drives the high-impedance capacitive load of a MOSFET gate input.

Loading the GATE output resistively adds load current and reduces gate drive capability. The internal charge pump does not require external capacitors.

The external pass MOSFET is disabled, and charge pump circuitry is turned off when neither VCC1 nor VCC2 are above the 1.875V UVLO or EN is low.

Logic Driven Supply Sequencing
The MAX6819 offers a logic-compatible enable input (EN) that allows digital devices to control sequencing. When the TTL/CMOS-compatible EN input is logic-low, the GATE output is low. When the EN input is logic-high (and SETV is above the monitor threshold), the GATE output is enabled after an internally fixed 200ms delay. For a logic-controlled sequencer when voltage monitoring is not desired, connect SETV to VCC1 or VCC2 > 0.62V (Figure 3).

Sequencing Three or More Supplies
Cascade multiple MAX6819/MAX6820 to sequence more than two supplies. Daisy-chaining devices allows one sequencer to monitor the passed voltage of an upstream sequencer through the SETV comparator inputs. EN allows any sequencer to be shut down independent of the SETV levels. Figure 4 shows an example of a three-supply system in which the first supply must come up before the second supply and the third supply must yield for both supplies.

Negative-Going Voltage Transient Immunity
The MAX6819/MAX6820 power-supply voltage sequencers are relatively immune to short-duration (pulse width), negative-going voltage transients (Figure 5). However, the amplitude of the transient is inversely proportional to its pulse width.

Chip Information
TRANSISTOR COUNT: 638
PROCESS: BiCMOS
SOT23 Power-Supply Sequencers

Figure 3. Timing Diagram

Figure 4. Sequencing Three Power Supplies

Figure 5. Maximum Transient Duration vs. SETV Threshold in Overdrive
Typical Operating Circuits (continued)

- Primary Supply (1.8V)
- Secondary Supply (3.3V)
- VCC2
- Gate
- Dual-Supply Board or µP
- R1
- R2
- DC/DC
- MAX6820
- MAX6820
- GND
- SETV
- SETD

Pin Configurations (continued)

- VCC1
- VCC2
- GND
- Gate
- SETV
- SETD

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)