General Description
The MAX4586/MAX4587 serial-interface, programmable, 4-to-1 channel multiplexers are ideal for multimedia applications. They feature 65Ω on-resistance, 4Ω on-resistance matching between channels, and 5Ω on-resistance flatness. Additionally, they feature -83dB off-isolation at 20kHz and -48dB off-isolation at 10MHz, with -84dB crosstalk at 20kHz and -60dB crosstalk at 10MHz.

The MAX4586 uses a 2-wire, I²C™-compatible serial interface; the MAX4587 uses a 3-wire, SPI™/QSPI™/MICROWIRE™-compatible interface. Both devices are available in 10-pin µMAX packages and are specified for the extended -40°C to +85°C temperature range.

Applications
- Cellular Phones and Accessories
- Private Mobile Radios (PMRs)
- PC Multimedia Audio/Video Routing
- Industrial Equipment
- Set-Top Boxes
- Video Conferencing
- High-End Audio Equipment

Features
- +2.7V to +5.5V Single-Supply Operation
- 4-to-1 Channel Multiplexer
- 65Ω (max) RON with +5V Supply
- Audio Performance
 - -83dB Off-Isolation at 20kHz
 - -84dB Crosstalk at 20kHz
- Video Performance
 - -48dB Off-Isolation at 10MHz
 - -60dB Crosstalk at 10MHz
- Serial Interface
 - 2-Wire, I²C Compatible (MAX4586)
 - 3-Wire, SPI/QSPI/MICROWIRE Compatible (MAX4587)

Ordering Information

<table>
<thead>
<tr>
<th>PART</th>
<th>TEMP. RANGE</th>
<th>PIN-PACKAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX4586EUB</td>
<td>-40°C to +85°C</td>
<td>10 µMAX</td>
</tr>
<tr>
<td>MAX4587EUB</td>
<td>-40°C to +85°C</td>
<td>10 µMAX</td>
</tr>
</tbody>
</table>

PIN Configuration/Functional Diagram

I²C is a trademark of Philips Corp.
SPI/QSPI are trademarks of Motorola, Inc.
MICROWIRE is a trademark of National Semiconductor Corp.
ABSOLUTE MAXIMUM RATINGS

V+ to GND .. -0.3V to +6V
COM and NO_ to GND (Note 1)-0.3V to (V+ + 0.3V)
A, CS, SDA, DIN, SCL, and SCLK to GND-0.3V to +6V
Continuous Current into Any Terminal±20mA
Peak Current into Any Terminal
(pulsed at 1ms, 10% duty cycle)±40mA
ESD per Method 3015.7 ... >2kV

Continuous Power Dissipation (TA = +70°C)
10-Pin µMAX (derate 4.1mW/°C above +70°C)330mW
Operating Temperature Range-40°C to +85°C
Storage Temperature Range+.65°C to +150°C
Lead Temperature (soldering, 10sec)+300°C

Note 1: Signals on NO_ or COM exceeding V+ or ground are clamped by internal diodes. Limit forward-diode current to maximum current rating.

Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—Single +5V Supply
(V+ = +5V ±5%, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C) (Note 2)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANALOG SWITCHES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analog Signal Range (Note 3)</td>
<td>VNO_, VCOM</td>
<td>TA = +25°C</td>
<td>0</td>
<td>V+</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>On-Resistance</td>
<td>RON</td>
<td>V+ = 4.75V, VNO_ = 3V, ICOM = 4mA</td>
<td>TA = +25°C</td>
<td>45</td>
<td>65</td>
<td>Ω</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TA = TMIN to TMAX</td>
<td></td>
<td></td>
<td></td>
<td>80</td>
</tr>
<tr>
<td>On-Resistance Match Between Channels (Note 4)</td>
<td>ΔRON</td>
<td>V+ = 4.75V, VNO_ = 3V, ICOM = 4mA</td>
<td>TA = +25°C</td>
<td>2</td>
<td>4</td>
<td>Ω</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TA = TMIN to TMAX</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>On-Resistance Flatness (Note 5)</td>
<td>RFLAT</td>
<td>V+ = 4.75V, VNO_ = 1V, 2V, 3V, ICOM = 4mA</td>
<td>TA = +25°C</td>
<td>2</td>
<td>5</td>
<td>Ω</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TA = TMIN to TMAX</td>
<td></td>
<td></td>
<td></td>
<td>6.5</td>
</tr>
<tr>
<td>NO_ Off-Leakage Current (Note 6)</td>
<td>INO_(OFF)</td>
<td>V+ = 5.25V, VNO_ = 1V, 4.5V; VCOM = 4.5V, 1V</td>
<td>TA = +25°C</td>
<td>-1</td>
<td>0.001</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TA = TMIN to TMAX</td>
<td></td>
<td></td>
<td></td>
<td>-10</td>
</tr>
<tr>
<td>COM Off-Leakage Current (Note 6)</td>
<td>ICOM(OFF)</td>
<td>V+ = 5.25V, VNO_ = 1V, 4.5V; VCOM = 4.5V, 1V</td>
<td>TA = +25°C</td>
<td>-1</td>
<td>0.001</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TA = TMIN to TMAX</td>
<td></td>
<td></td>
<td></td>
<td>-10</td>
</tr>
<tr>
<td>COM On-Leakage Current (Note 6)</td>
<td>ICOM(ON)</td>
<td>V+ = 5.25V; VNO_ = 1V, 4.5V, or floating; VCOM = 1V, 4.5V</td>
<td>TA = +25°C</td>
<td>-1</td>
<td>0.002</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TA = TMIN to TMAX</td>
<td></td>
<td></td>
<td></td>
<td>-10</td>
</tr>
</tbody>
</table>

AUDIO PERFORMANCE

Off-Isolation (Note 7) | VISO(A) | VA = 1.0VRMS, fIN = 20kHz, RL = 600Ω, Figure 8 | -83 | dB |
| | | VCI(A) | VA = 1.0VRMS, fIN = 20kHz, RS = 600Ω, Figure 8 | -84 | dB |
ELECTRICAL CHARACTERISTICS—Single +5V Supply (continued)

(V+ = +5V ±5%, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.) (Note 2)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIDEO PERFORMANCE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Off-Isolation (Note 7)</td>
<td>VISO(V)</td>
<td>VA = 1.0VRMS, fIN = 10MHz, RL = 50Ω, Figure 8</td>
<td>-48</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Channel-to-Channel Crosstalk</td>
<td>VCT(V)</td>
<td>VA = 1.0VRMS, fIN = 10MHz, RS = 50Ω, Figure 8</td>
<td>-60</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>-0.1dB Bandwidth</td>
<td>BW</td>
<td>RS = 75Ω, RL = 1kΩ</td>
<td>5</td>
<td></td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td>-3dB Bandwidth</td>
<td>BW</td>
<td>RS = 50Ω, RL = 50Ω</td>
<td>300</td>
<td></td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td>NO_ Off-Capacitance</td>
<td>COFF</td>
<td>fIN = 1MHz</td>
<td>5</td>
<td></td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>DYNAMIC TIMING (Notes 8, 9, and Figure 5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-On Time</td>
<td>tON</td>
<td>VNO_ = 2.5V, RL = 5kΩ, CL = 35pF</td>
<td>275</td>
<td>400</td>
<td>500</td>
<td>ns</td>
</tr>
<tr>
<td>Turn-Off Time</td>
<td>tOFF</td>
<td>VNO_ = 2.5V, RL = 300Ω, CL = 35pF</td>
<td>125</td>
<td>200</td>
<td>250</td>
<td>ns</td>
</tr>
<tr>
<td>Break-Before-Make Time</td>
<td>tBBM</td>
<td>VNO_ = 2.5V, Figure 6</td>
<td>10</td>
<td>50</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Charge Injection</td>
<td>Q</td>
<td>CL = 1.0nF, VS = 0, RS = 0, Figure 7</td>
<td>3</td>
<td></td>
<td></td>
<td>pC</td>
</tr>
<tr>
<td>POWER SUPPLY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power-Supply Voltage Range</td>
<td>V+</td>
<td></td>
<td>2.7</td>
<td>5.5</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Supply Current</td>
<td>I+</td>
<td>All logic inputs = 0 or V+</td>
<td>5</td>
<td>10</td>
<td></td>
<td>µA</td>
</tr>
</tbody>
</table>
Serially Controlled, 4-Channel Audio/Video Multiplexers

ELECTRICAL CHARACTERISTICS—Single +3V Supply
(V+ = 3V ±10%, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>CONDITIONS</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANALOG SWITCHES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analog Signal Range (Note 3)</td>
<td>VNO_, VCOM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>On-Resistance</td>
<td>RON</td>
<td>V+ = 2.7V, VNO_ = 1V, ICOM = 4mA</td>
<td>TA = +25°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TA = TMIN to TMAX</td>
</tr>
<tr>
<td>On-Resistance Match Between Channels (Note 4)</td>
<td>ΔRON</td>
<td>V+ = 2.7V, VNO_ = 1V, ICOM = 4mA</td>
<td>TA = +25°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TA = TMIN to TMAX</td>
</tr>
<tr>
<td>On-Resistance Flatness (Note 5)</td>
<td>RFLAT</td>
<td>V+ = 2.7V, VNO_ = 1V, 1.5V, 2V, ICOM = 4mA</td>
<td>TA = +25°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TA = TMIN to TMAX</td>
</tr>
<tr>
<td>NO_ Off-Leakage Current (Notes 6, 10)</td>
<td>INO_(OFF)</td>
<td>V+ = 3.6V; VNO_ = 0.5V, 3V; VCOM = 3V, 0.5V</td>
<td>TA = +25°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TA = TMIN to TMAX</td>
</tr>
<tr>
<td>COM Off-Leakage Current (Notes 6, 10)</td>
<td>ICOM(OFF)</td>
<td>V+ = 3.6V; VNO_ = 0.5V, 3V; VCOM = 3V, 0.5V</td>
<td>TA = +25°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TA = TMIN to TMAX</td>
</tr>
<tr>
<td>COM On-Leakage Current (Notes 6, 10)</td>
<td>ICOM(ON)</td>
<td>V+ = 3.6V; VNO_ = 0.5V, 3V, or floating; VCOM = 0.5V, 3V</td>
<td>TA = +25°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TA = TMIN to TMAX</td>
</tr>
<tr>
<td>AUDIO PERFORMANCE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Off-Isolation (Note 7)</td>
<td>VISO(A)</td>
<td>VA = 0.5VRMS, fIN = 20kHz, RL = 600Ω, Figure 8</td>
<td>-83</td>
</tr>
<tr>
<td>Channel-to-Channel Crosstalk</td>
<td>VCT(A)</td>
<td>VA = 0.5VRMS, fIN = 20kHz, RS = 600Ω, Figure 8</td>
<td>-84</td>
</tr>
<tr>
<td>VIDEO PERFORMANCE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Off-Isolation (Note 7)</td>
<td>VISO(V)</td>
<td>VA = 0.5VRMS, fIN = 10MHz, RL = 50Ω, Figure 8</td>
<td>-48</td>
</tr>
<tr>
<td>Channel-to-Channel Crosstalk</td>
<td>VCT(V)</td>
<td>VA = 0.5VRMS, fIN = 10MHz, RS = 50Ω, Figure 8</td>
<td>-60</td>
</tr>
<tr>
<td>-3dB Bandwidth</td>
<td>BW</td>
<td>RS = 50Ω, RL = 50Ω</td>
<td></td>
</tr>
<tr>
<td>NO_ Off-Capacitance</td>
<td>COFF</td>
<td>fIN = 1MHz</td>
<td></td>
</tr>
<tr>
<td>DYNAMIC TIMING (Notes 8, 9, and Figure 5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-On Time</td>
<td>tON</td>
<td>VNO_ = 1.5V, RL = 5kΩ, CL = 35pF</td>
<td>TA = +25°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TA = TMIN to TMAX</td>
</tr>
<tr>
<td>Turn-Off Time</td>
<td>tOFF</td>
<td>VNO_ = 1.5V, RL = 300Ω, CL = 35pF</td>
<td>TA = +25°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TA = TMIN to TMAX</td>
</tr>
<tr>
<td>Break-Before-Make Time</td>
<td>tBBM</td>
<td>VNO_ = 1.5V, Figure 6</td>
<td></td>
</tr>
</tbody>
</table>
I/O Interface Characteristics

(V+ = +2.7V to +5.25V, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital Inputs (SCLK, DIN, CS, SCL, SDA, A)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Low Voltage</td>
<td>(V_{IL})</td>
<td>(V+ = 5V)</td>
<td>0.8</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V+ = 3V)</td>
<td>0.6</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Input High Voltage</td>
<td>(V_{IH})</td>
<td>(V+ = 5V)</td>
<td>3</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V+ = 3V)</td>
<td>2</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Input Hysteresis</td>
<td>(V_{HYST})</td>
<td></td>
<td>0.2</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Input Leakage Current</td>
<td>(I_{LEAK})</td>
<td>Digital inputs = 0 or (V+)</td>
<td>-1</td>
<td>0.01</td>
<td>1</td>
<td>(\mu A)</td>
</tr>
<tr>
<td>Input Capacitance</td>
<td>(C_{IN})</td>
<td>(f = 1\text{MHz})</td>
<td>5</td>
<td></td>
<td></td>
<td>(\text{pF})</td>
</tr>
<tr>
<td>Digital Output (SDA)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Low Voltage</td>
<td>(V_{OL})</td>
<td>(ISINK = 6mA)</td>
<td>0.4</td>
<td></td>
<td></td>
<td>V</td>
</tr>
</tbody>
</table>

2-Wire Timing Characteristics

(Figures 1 and 2, V+ = +2.7V to +5.25V, \(f_{SCL} \) = 100kHz, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCL Clock Frequency</td>
<td>(f_{SCL})</td>
<td>(V+ = 2.7V \text{ to } 5.25V)</td>
<td>0</td>
<td>100</td>
<td></td>
<td>kHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V+ = 4.75V \text{ to } 5.25V)</td>
<td>400</td>
<td></td>
<td></td>
<td>kHz</td>
</tr>
<tr>
<td>Bus Free Time Between Stop and Start Condition</td>
<td>(t_{BUF})</td>
<td></td>
<td>4.7</td>
<td></td>
<td></td>
<td>(\mu s)</td>
</tr>
<tr>
<td>Hold Time After Start Condition</td>
<td>(t_{HD:STA})</td>
<td>The first clock is generated after this period.</td>
<td>4.0</td>
<td></td>
<td></td>
<td>(\mu s)</td>
</tr>
<tr>
<td>Stop Condition Setup Time</td>
<td>(t_{SU:STO})</td>
<td></td>
<td>4.0</td>
<td></td>
<td></td>
<td>(\mu s)</td>
</tr>
<tr>
<td>Data Hold Time</td>
<td>(t_{HD:DAT})</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td>(\mu s)</td>
</tr>
<tr>
<td>Data Setup Time</td>
<td>(t_{SU:DAT})</td>
<td></td>
<td>250</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Clock Low Period</td>
<td>(t_{LOW})</td>
<td></td>
<td>4.7</td>
<td></td>
<td></td>
<td>(\mu s)</td>
</tr>
<tr>
<td>Clock High Period</td>
<td>(t_{HIGH})</td>
<td></td>
<td>4.0</td>
<td></td>
<td></td>
<td>(\mu s)</td>
</tr>
<tr>
<td>SCL/SDA Rise Time(Note 11)</td>
<td>(t_{R})</td>
<td></td>
<td>20 + 0.1(C_{B})</td>
<td>300</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>SCL/SDA Fall Time(Note 11)</td>
<td>(t_{F})</td>
<td></td>
<td>20 + 0.1(C_{B})</td>
<td>300</td>
<td></td>
<td>ns</td>
</tr>
</tbody>
</table>
Serially Controlled, 4-Channel Audio/Video Multiplexers

3-WIRE TIMING CHARACTERISTICS
(Figures 3 and 4, V+ = +2.7V to +5.25V, fOP = 2.1MHz, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Frequency</td>
<td>fOP</td>
<td>V+ = 2.7V to 5.25V</td>
<td>0</td>
<td>2.1</td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V+ = 4.75V to 5.25V</td>
<td></td>
<td></td>
<td>10</td>
<td>ns</td>
</tr>
<tr>
<td>DIN to SCLK Setup</td>
<td>tDS</td>
<td></td>
<td>100</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>DIN to SCLK Hold</td>
<td>tDH</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>CS Fall to SCLK Rise Setup</td>
<td>tCSS</td>
<td></td>
<td>100</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>CS Rise to SCLK Hold</td>
<td>tCSH</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>SCLK Pulse Width Low</td>
<td>tCL</td>
<td></td>
<td>200</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>SCLK Pulse Width High</td>
<td>tCH</td>
<td></td>
<td>200</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Rise Time (SCLK, DIN, CS)</td>
<td>tR</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td>µs</td>
</tr>
<tr>
<td>Fall Time (SCLK, DIN, CS)</td>
<td>tF</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td>µs</td>
</tr>
<tr>
<td>CS Pulse Width High</td>
<td>tCSW</td>
<td></td>
<td>40</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
</tbody>
</table>

Note 2: Algebraic convention is used in this data sheet; the most negative value is shown in the minimum column.

Note 3: Guaranteed by design. Not subject to production testing.

Note 4: ∆RON = RON(MAX) - RON(MIN).

Note 5: Resistance flatness is defined as the difference between the maximum and minimum on-resistance values, as measured over the specified analog signal range.

Note 6: Leakage parameters are 100% tested at maximum rated temperature and guaranteed by correlation at TA = +25°C.

Note 7: Off-isolation = 20log (VCOM / VNO_), VCOM = output, VNO_ = input to off switch.

Note 8: All timing is measured from the clock's falling edge preceding the ACK signal for 2-wire and from the rising edge of CS for 3-wire. Turn-off time is defined at the output of the switch for a 0.5V change, tested with a 300Ω load to ground. Turn-on time is defined at the output of the switch for a 0.5V change and measured with a 5kΩ load resistor to GND. All timing is shown with respect to 20% V+ and 70% V+, unless otherwise noted.

Note 9: Typical values are for MAX4586 devices.

Note 10: Leakage testing is guaranteed by testing with a +5.25V supply.

Note 11: CB = capacitance of one bus line in pF. Tested with CB = 400pF.

Typical Operating Characteristics

(V+ = +5V, TA = +25°C, unless otherwise noted.)
Serially Controlled, 4-Channel Audio/Video Multiplexers

Typical Operating Characteristics (continued)

(V+ = +5V, TA = +25°C, unless otherwise noted.)

- Supply Current vs. Temperature
- Charge Injection vs. Vcom
- Charge Injection vs. Vcom
- Turn-On and Turn-Off Times vs. Supply Voltage
- Supply Voltage vs. Temperature
- Charge Injection vs. Vcom
- Turn-On/Turn-Off Times vs. Supply Voltage
- Turn-On/Turn-Off Times vs. Temperature
- On-Leakage Current vs. Temperature
- Off-Leakage Current vs. Temperature
- Audio Frequency Response
- Video Frequency Response
- Turn-On/Turn-Off Times

MAX4586/MAX4587
Serially Controlled, 4-Channel Audio/Video Multiplexers

Detailed Description

The MAX4586/MAX4587 are serial-interface, programmable multiplexers. Each device contains a 4-to-1 normally open (NO) multiplexer. Each switch is independently controlled through the on-chip serial interface. The MAX4586 uses a 2-wire, I2C-compatible serial communications protocol, and the MAX4587 uses a 3-wire, SPI/QSPI/MICROWIRE-compatible serial communications protocol.

These devices operate from a single +2.7V to +5.5V supply and are optimized for use with an audio frequency at 20kHz and video frequencies up to 10MHz. They feature 65Ω on-resistance, 4Ω on-resistance matching between channels, and 5Ω on-resistance flatness. Audio off-isolation is -83dB at 20kHz and crosstalk is at least -84dB at 20kHz, while video off-isolation is -48dB at 10MHz and crosstalk is at least -60dB at 10MHz.

Applications Information

Multiplexer Control

The MAX4586/MAX4587 have a common command-bit structure; the only difference between them is the interface type (2-wire or 3-wire, respectively).

The command controls the open/closed states of the various switches. Table 1 shows the configuration of the data bits and their related switches. After a command is issued, a logic “1” in any data-bit location closes the associated switch, while a logic “0” opens it (Table 2).

2-Wire Serial Interface

The MAX4586 uses a 2-wire, I2C-compatible serial interface. The COM_ register uses the “SendByte” protocol that consists of an address byte followed by a command byte (Table 1).

To address a given chip, the A bit in the address byte must duplicate the value present at the A pin of that chip. The rest of the address bits must match those shown in Table 3. The command byte details are described in the Switch Control section.

The 2-wire serial interface requires only two I/O lines of a standard microprocessor (µP) port. Figures 1 and 2 detail the timing diagram for signals on the 2-wire bus, and Tables 1 and 3 detail the format of the signals. The MAX4586 is a receive-only device and must be controlled by the bus master device. A bus master device communicates by transmitting the address byte of the slave device over the bus and then transmitting the desired information. Each transmission consists of a start condition, an address byte, a command byte, and finally a stop condition. The slave device acknowledges the recognition of its address by pulling the SDA line low for one clock period after the address byte is transmitted. The slave device also issues a similar acknowledgment after the command byte.

Pin Description

<table>
<thead>
<tr>
<th>PIN</th>
<th>NAME</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX4586</td>
<td>MAX4587</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>COM</td>
<td>Analog Switch Common Terminal</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>LSB + 2 of the 2-Wire Serial-Interface Address Field</td>
</tr>
<tr>
<td>3</td>
<td>SDA</td>
<td>Data Input of 2-Wire Serial Interface</td>
</tr>
<tr>
<td>4</td>
<td>V+</td>
<td>Supply Voltage</td>
</tr>
<tr>
<td>5</td>
<td>SCL</td>
<td>Clock Input of the 2-Wire Serial Interface</td>
</tr>
<tr>
<td>6</td>
<td>NO1</td>
<td>Mux Normally Open Output 1</td>
</tr>
<tr>
<td>7</td>
<td>NO2</td>
<td>Mux Normally Open Output 2</td>
</tr>
<tr>
<td>8</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>9</td>
<td>NO3</td>
<td>Mux Normally Open Output 3</td>
</tr>
<tr>
<td>10</td>
<td>NO4</td>
<td>Mux Normally Open Output 4</td>
</tr>
</tbody>
</table>
Start and Stop Conditions

The bus master signals the beginning of a transmission with a start condition by transitioning SDA from high to low while SCL is high. When the bus master has finished communicating with the slave device, it issues a stop condition by transitioning SDA from low to high while SCL is high. The bus master is then free for another transmission.

Slave Address (Address Byte)

The MAX4586 uses an 8-bit-long slave address. To select a slave address, connect \(A \) to \(V^+ \) or GND. The MAX4586 has two possible slave addresses, so a maximum of two of these devices may share the same address line. The slave device MAX4586 monitors the serial bus continuously, waiting for a start condition followed by an address byte. When a slave device recog-
Serially Controlled, 4-Channel Audio/Video Multiplexers

3-Wire Serial Interface

The MAX4587 3-wire serial interface is SPI/QSPI/MICROWIRE compatible. An active-low chip-select (CS) input enables the device to receive data for the serial input (DIN). Data is clocked in on the rising edge of the serial-clock (SCLK) signal. A total of 8 bits is needed in each write cycle. The first bit clocked into the MAX4587 is the command byte’s MSB, and the last bit clocked in is the data byte’s LSB. The first four bits of the command byte are “don’t care.” While shifting data, the device remains in its original configuration. After all eight bits are clocked into the input shift register, a rising edge on CS latches the data into the MAX4587 internal registers, initiating the device’s change of state. Figures 3 and 4 detail the 3-wire protocol, and Table 1 details the command byte format.

Addressable Serial Interface

To program several MAX4587s individually using a single processor, connect DIN of each MAX4587 together and control CS on each MAX4587 separately. To select a particular device, drive the corresponding CS low, clock in the 8-bit command, then drive CS high to execute the command. Typically, only one MAX4587 is addressed at a time.

Power-Up State

The MAX4586/MAX4587 feature a preset power-up state. See Table 1 to determine the power-up state of the devices.

Chip Information

TRANSISTOR COUNT: 2259
Serially Controlled, 4-Channel Audio/Video Multiplexers

Test Circuits/Timing Diagrams

Figure 5. Switching Time

Figure 6. Break-Before-Make Interval
Serially Controlled, 4-Channel Audio/Video Multiplexers

Figure 7. Charge Injection

Figure 8. Off-Isolation and Crosstalk

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.