General Description

The MAX4291/MAX4292/MAX4294 family of micropower operational amplifiers operates from a 1.8V to 5.5V single supply or ±0.9V to ±2.75V dual supplies and has Rail-to-Rail® input/output capabilities. These amplifiers provide a 500kHz gain-bandwidth product and 120dB open-loop voltage gain while using only 100µA of supply current per amplifier. The combination of low input offset voltage (±200µV) and high open-loop gain makes them ideal for low-power/low-voltage, high-precision portable applications.

The MAX4291/MAX4292/MAX4294 have an input common-mode range that extends to each supply rail, and their outputs swing to within 46mV of the rails with a 2kΩ load. Although the minimum operating voltage is specified at 1.8V, these devices typically operate down to 1.5V. The combination of ultra-low-voltage operation, rail-to-rail inputs/output, and low-power consumption makes these devices ideal for any portable/two-cell battery-powered system.

The single MAX4291 is offered in an ultra-small 5-pin SC70 package. The dual MAX4292 is offered in a space-saving 8-bump, 1.5mm X 1.5mm footprint, ultra chip-scale package (UCSP™).

Applications

- 2-Cell Battery-Operated Systems
- Portable Electronic Equipment
- Battery-Powered Instrumentation
- Digital Scales
- Strain Gauges
- Sensor Amplifiers
- Cellular Phones

Features

- Ultra-Low Voltage Operation—Guaranteed Down to 1.8V
- 100µA Supply Current per Amplifier
- 500kHz Gain-Bandwidth Product
- 120dB Open-Loop Voltage Gain (RL = 100kΩ)
- 0.017% Total Harmonic Distortion Plus Noise (THD + N) at 1kHz
- Rail-to-Rail Input Common-Mode Range
- Rail-to-Rail Output Drives 2kΩ Load
- No Phase Reversal for Overdriven Inputs
- Unity-Gain Stable for Capacitive Loads up to 100pF
- 200µV Input Offset Voltage (MAX4292/MAX4294)
- Single in Small 5-Pin SC70
- Available in Ultra-Small Packages:
  - 5-Pin SC70 (MAX4291)
  - 8-Bump UCSP (MAX4292)

Ordering Information

<table>
<thead>
<tr>
<th>PART</th>
<th>TEMP RANGE</th>
<th>PIN-PACKAGE</th>
<th>TOP MARK</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX4291EXK-T</td>
<td>-40°C to +85°C</td>
<td>5 SC70-5</td>
<td>AAD</td>
</tr>
<tr>
<td>MAX4291EU5K-T</td>
<td>-40°C to +85°C</td>
<td>5 SOT23-5</td>
<td>ADML</td>
</tr>
<tr>
<td>MAX4292EBL-T*</td>
<td>-40°C to +85°C</td>
<td>8 UCSP-8</td>
<td>AAJ</td>
</tr>
<tr>
<td>MAX4292EUA</td>
<td>-40°C to +85°C</td>
<td>8 µMAX</td>
<td>—</td>
</tr>
<tr>
<td>MAX4292ESA</td>
<td>-40°C to +85°C</td>
<td>8 SO</td>
<td>—</td>
</tr>
<tr>
<td>MAX4294ESD</td>
<td>-40°C to +85°C</td>
<td>14 SO</td>
<td>—</td>
</tr>
<tr>
<td>MAX4294EUD</td>
<td>-40°C to +85°C</td>
<td>14 TSSOP</td>
<td>—</td>
</tr>
</tbody>
</table>

*UCSP reliability is integrally linked to the user’s assembly methods, circuit board material, and environment. Refer to the UCSP Reliability Notice in the UCSP Reliability section of this data sheet for more information.

Selector Guide

<table>
<thead>
<tr>
<th>PART</th>
<th>AMPLIFIERS</th>
<th>PIN-PACKAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX4291</td>
<td>1</td>
<td>5-pin SC70/SOT23</td>
</tr>
<tr>
<td>MAX4292</td>
<td>2</td>
<td>8-pin µMAX/UCSP</td>
</tr>
<tr>
<td>MAX4294</td>
<td>4</td>
<td>14-pin SO/TSSOP</td>
</tr>
</tbody>
</table>

Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd. UCSP is a trademark of Maxim Integrated Products, Inc.

For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.
Ultra-Small, 1.8V, µPower, Rail-to-Rail I/O Op Amps

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (VCC to VEE) .............................. 6V
All Other Pins ...................(VCC + 0.3V) to (VEE - 0.3V)
Current into IN_+, IN_- ...................................... ±25mA
Output Short-Circuit Duration.................................. Continuous
Continuous Power Dissipation (TA = +25°C) ........... 180mW
5-Pin SC70 (derate 2.5mW/°C above +70°C) ........... 200mW
5-Pin SOT23 (derate 7.1mW/°C above +70°C) ........... 571mW
8-Bump UCSP (derate 4.7mW/°C above +70°C) ........... 379mW
8-Pin µMAX (derate 4.10mW/°C above +70°C) ........... 330mW
8-Pin SO (derate 5.88mW/°C above +70°C) ........... 471mW
14-Pin SO (derate 8.33mW/°C above +70°C) ........... 667mW
14-Pin TSSOP (derate 6.3mW/°C above +70°C) ........... 500mW
Operating Temperature Range .................. -40°C to +85°C
Junction Temperature .................................. +150°C
Storage Temperature Range .................. -65°C to +150°C
Lead Temperature (soldering, 10s) .................. +300°C

Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

(VCC = 1.8V to 5.5V, VEE = VCM = 0, VOUT = VCC/2, RL = 100Ω connected to VCC/2, TA = +25°C, unless otherwise noted.)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage Range</td>
<td>VCC</td>
<td>Inferred from PSRR test</td>
<td>1.8</td>
<td>5.5</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Quiescent Supply Current (Per Amplifier)</td>
<td>IQ</td>
<td>VCC = 1.8V</td>
<td>100</td>
<td>210</td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>VCC = 5.0V</td>
<td>100</td>
<td>255</td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td>Input Offset Voltage</td>
<td>VOS</td>
<td>MAX4291</td>
<td>±400</td>
<td>±2500</td>
<td>µV</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MAX4292/MAX4294</td>
<td>±200</td>
<td>±1200</td>
<td>µV</td>
<td></td>
</tr>
<tr>
<td>Input Bias Current</td>
<td>IB</td>
<td>VCC = 5.0V, 0 ≤ VCM ≤ 5.0V</td>
<td>±15</td>
<td>±60</td>
<td>nA</td>
<td></td>
</tr>
<tr>
<td>Input Offset Current</td>
<td>IOS</td>
<td>VCC = 5.0V, 0 ≤ VCM ≤ 5.0V</td>
<td>±1</td>
<td>±7</td>
<td>nA</td>
<td></td>
</tr>
<tr>
<td>Differential Input Resistance</td>
<td>RIN</td>
<td>V(IN+) - V(IN-) &lt; 10mV</td>
<td>0.75</td>
<td></td>
<td>MΩ</td>
<td></td>
</tr>
<tr>
<td>Input Common-Mode Voltage Range</td>
<td>VCM</td>
<td>Inferred from CMRR test</td>
<td>0</td>
<td>VCC</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Common-Mode Rejection Ratio</td>
<td>CMRR</td>
<td>Tested for 0 ≤ VCM ≤ 1.8V, VCC = 1.8V</td>
<td>MAX4291</td>
<td>50</td>
<td>80</td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MAX4292/MAX4294</td>
<td>57</td>
<td>80</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tested for 0 ≤ VCM ≤ 5.0V, VCC = 5.0V</td>
<td>MAX4291</td>
<td>60</td>
<td>90</td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MAX4292/MAX4294</td>
<td>66</td>
<td>90</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>Power-Supply Rejection Ratio</td>
<td>PSRR</td>
<td></td>
<td>77</td>
<td>100</td>
<td>dB</td>
<td></td>
</tr>
</tbody>
</table>
# Ultra-Small, 1.8V, µPower, Rail-to-Rail I/O Op Amps

## ELECTRICAL CHARACTERISTICS (continued)

(V\textsubscript{CC} = 1.8V to 5.5V, V\textsubscript{EE} = V\textsubscript{CM} = 0, V\textsubscript{OUT} = V\textsubscript{CC}/2, R\textsubscript{L} = 100kΩ connected to V\textsubscript{CC}/2, T\textsubscript{A} = +25°C, unless otherwise noted.) (Note 1)

### PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX | UNITS
--- | --- | --- | --- | --- | --- | ---
Large-Signal Voltage Gain | A\textsubscript{V} | V\textsubscript{CC} = 1.8V | | | | dB
 | | V\textsubscript{CC} = 5.0V | RL = 100kΩ, 0.02V ≤ V\textsubscript{OUT} ≤ V\textsubscript{CC} - 0.02V | 80 | 120 | dB
 | | | RL = 2kΩ, 0.1V ≤ V\textsubscript{OUT} ≤ V\textsubscript{CC} - 0.1V | 80 | 110 | dB
Output-Voltage Swing High | V\textsubscript{OH} | Specified as | RL = 100kΩ to V\textsubscript{CC}/2 | 2 | 20 | mV
 | | I\textsubscript{VC} - V\textsubscript{OH} | RL = 2kΩ to V\textsubscript{CC}/2 | 15 | 40 | mV
Output-Voltage Swing Low | V\textsubscript{OL} | Specified as | RL = 100kΩ to V\textsubscript{CC}/2 | 25 | 80 | mV
 | | I\textsubscript{VEE} - V\textsubscript{OL} | RL = 2kΩ to V\textsubscript{CC}/2 | 46 | 120 | mV
Output Short-Circuit Current | I\textsubscript{OUT(SC)} | Sourcing or sinking | | 20 | | mA
Channel-to-Channel Isolation | CH\textsubscript{ISO} | Specified at f = 10kHz (MAX4292/MAX4294 only) | | 83 | | dB
Gain-Bandwidth Product | GBWP | | | 500 | | kHz
Phase Margin | \textphi\textsubscript{M} | | | 65 | | degrees
Gain Margin | GM | | | 12 | | dB
Slew Rate | SR | | | 0.2 | | V/μs
Input Voltage-Noise Density | e\textsubscript{n} | f = 10kHz | | 70 | | nV/√Hz
Input Current-Noise Density | i\textsubscript{n} | f = 10kHz | | 0.05 | | pA/√Hz
Capacitive-Load Stability | Av\textsubscript{CL} | 1V/V, no sustained oscillations | | 100 | | pF

---

## ELECTRICAL CHARACTERISTICS

(V\textsubscript{CC} = 1.8V to 5.5V, V\textsubscript{EE} = V\textsubscript{CM} = 0, V\textsubscript{OUT} = V\textsubscript{CC}/2, R\textsubscript{L} = 100kΩ connected to V\textsubscript{CC}/2, T\textsubscript{A} = T\textsubscript{MIN} to T\textsubscript{MAX}, unless otherwise noted.) (Note 1)

### PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX | UNITS
--- | --- | --- | --- | --- | --- | ---
Supply-Voltage Range | V\textsubscript{CC} | Inferred from PSRR test | 1.8 | 5.5 | | V
Quiescent Supply Current (Per Amplifier) | I\textsubscript{Q} | V\textsubscript{CC} = 1.8V | | | | µA
 | | V\textsubscript{CC} = 5.0V | | | | µA
Input Offset Voltage | V\textsubscript{OS} | MAX4291 | ±3000 | | | µV
 | | MAX4292/MAX4294 | ±2000 | | | µV
Ultra-Small, 1.8V, µPower, Rail-to-Rail I/O Op Amps

ELECTRICAL CHARACTERISTICS (continued)

(VCC = 1.8V to 5.5V, VEE = VCM = 0, VOUT = VCC/2, RL = 100kΩ connected to VCC/2, TA = TMIN to TMAX, unless otherwise noted.)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Offset Voltage Drift</td>
<td>TCVOS</td>
<td></td>
<td>1.2</td>
<td>µV/°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Bias Current</td>
<td>IB</td>
<td>VCC = 5.0V, 0 ≤ VCM ≤ 5.0V</td>
<td></td>
<td>±90</td>
<td>nA</td>
<td></td>
</tr>
<tr>
<td>Input Offset Current</td>
<td>IOS</td>
<td>VCC = 5.0V, 0 ≤ VCM ≤ 5.0V</td>
<td></td>
<td>±10</td>
<td>nA</td>
<td></td>
</tr>
<tr>
<td>Input Common-Mode Voltage Range</td>
<td>VCM</td>
<td>Inferred from CMRR test</td>
<td>0</td>
<td>VCC</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Common-Mode Rejection Ratio</td>
<td>CMRR</td>
<td>Tested for 0 ≤ VCM ≤ 1.8V, VCC = 1.8V</td>
<td>MAX4291</td>
<td>50</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tested for 0 ≤ VCM ≤ 5.0V, VCC = 5.0V</td>
<td>MAX4291</td>
<td>53</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MAX4292/MAX4294</td>
<td></td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Power-Supply Rejection Ratio</td>
<td>PSRR</td>
<td></td>
<td>75</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Large-Signal Voltage Gain</td>
<td>AV</td>
<td>VCC = 1.8V</td>
<td>RL = 100kΩ, 0.02V ≤ VOUT ≤ VCC - 0.02V</td>
<td>80</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VCC = 5.0V</td>
<td>RL = 2kΩ, 0.1V ≤ VOUT ≤ VCC - 0.1V</td>
<td>80</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>RL = 100kΩ, 0.02V ≤ VOUT ≤ VCC - 0.02V</td>
<td>80</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>RL = 2kΩ, 0.1V ≤ VOUT ≤ VCC - 0.1V</td>
<td>80</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Output-Voltage Swing High</td>
<td>VOH</td>
<td>Specified as</td>
<td>RL = 100kΩ to VCC/2</td>
<td>20</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>VCC - VOH</td>
<td>RL = 2kΩ to VCC/2</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-Voltage Swing Low</td>
<td>VOL</td>
<td>Specified as</td>
<td>RL = 100kΩ to VCC/2</td>
<td>120</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>VEE - VOL</td>
<td>RL = 2kΩ to VCC/2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note 1: All devices are 100% tested at TA = +25°C. All temperature limits are guaranteed by design.
Ultra-Small, 1.8V, μPower, Rail-to-Rail I/O Op Amps

Typical Operating Characteristics

(VCC = 2.4V, VEE = VCM = 0, VOUT = VCC/2, no load, TA = +25°C, unless otherwise noted.)
Ultra-Small, 1.8V, µPower, Rail-to-Rail I/O Op Amps

Typical Operating Characteristics (continued)

(VCC = 2.4V, VEE = VCM = 0, VOUT = VCC/2, no load, TA = +25°C, unless otherwise noted.)

OPEN-LOOP GAIN vs. OUTPUT SWING LOW
(VCC = 1.8V, RL CONNECTED TO VCC)

OPEN-LOOP GAIN vs. OUTPUT SWING HIGH
(VCC = 1.8V, RL CONNECTED TO VEE)

OPEN-LOOP GAIN vs. OUTPUT SWING LOW
(VCC = 5.5V, RL CONNECTED TO VCC)

OPEN-LOOP GAIN vs. OUTPUT SWING HIGH
(VCC = 5.5V, RL CONNECTED TO VEE)

OPEN-LOOP GAIN vs. TEMPERATURE

GAIN AND PHASE vs. FREQUENCY

TOTAL HARMONIC DISTORTION
PLUS NOISE vs. FREQUENCY
Ultra-Small, 1.8V, µPower, Rail-to-Rail I/O Op Amps

Typical Operating Characteristics (continued)

(VCC = 2.4V, VEE = VCM = 0, VOUT = VCC/2, no load, TA = +25°C, unless otherwise noted.)

- **LOAD RESISTOR vs. CAPACITIVE LOAD**
- **SMALL-SIGNAL TRANSIENT RESPONSE (NONINVERTING CONFIGURATION)**
- **SMALL-SIGNAL TRANSIENT RESPONSE (INVERTING CONFIGURATION)**
- **LARGE-SIGNAL TRANSIENT RESPONSE (NONINVERTING CONFIGURATION)**
- **LARGE-SIGNAL TRANSIENT RESPONSE (INVERTING CONFIGURATION)**
- **SUPPLY CURRENT vs. SINK CURRENT**
- **SUPPLY CURRENT vs. SOURCE CURRENT**
**Detailed Description**

**Rail-to-Rail Input Stage**

The MAX4291/MAX4292/MAX4294 have rail-to-rail inputs and output stages that are specifically designed for low-voltage, single-supply operation in the smallest package possible. The input stage consists of separate NPN and PNP differential stages, which operate together to provide a common-mode range extending to both supply rails. The crossover region of these two pairs occurs halfway between VCC and VEE. The input offset voltage is typically ±200µV (MAX4292/MAX4294). Low operating supply voltage, low supply current, rail-to-rail common-mode input range, and rail-to-rail outputs make this family of operational amplifiers (op amps) an excellent choice for precision or general-purpose, low-voltage, battery-powered systems.

Since the input stage consists of NPN and PNP pairs, the input bias current changes polarity as the common-mode voltage passes through the crossover region. Match the effective impedance seen by each input to reduce the offset error caused by input bias currents flowing through external source impedances (Figures 1a and 1b).

The combination of high-source impedance plus input capacitance (amplifier input capacitance plus stray...
capacitance) creates a parasitic pole that produces an underdamped signal response. Reducing input capacitance or placing a small capacitor across the feedback resistor improves response in this case.

The MAX4291/MAX4292/MAX4294 family’s inputs are protected from large differential input voltages by internal 10.6kΩ series resistors and back-to-back triple-diode stacks across the inputs (Figure 2). For differential input voltages (much less than 1.8V), input resistance is typically 0.75MΩ. For differential input voltages greater than 1.8V, input resistance is around 21.2kΩ, and the input bias current can be approximated by the following equation:

\[ I_{\text{BIAS}} = \frac{(V_{\text{DIFF}} - 1.8V)}{21.2k\Omega} \]

In the region where the differential input voltage approaches 1.8V, the input resistance decreases exponentially from 0.75MΩ to 21.2kΩ as the diode block begins to conduct. Conversely, the bias current increases with the same curve.

In unity-gain configuration, high slew-rate input signals may capacitively couple to the output through the triple-diode stacks.

---

Table 1. MAX4291 Characteristics with Typical Battery Systems

<table>
<thead>
<tr>
<th>BATTERY TYPE</th>
<th>RECHARGEABLE</th>
<th>( V_{\text{FRESH}} ) (V)</th>
<th>( V_{\text{END-OF-LIFE}} ) (V)</th>
<th>CAPACITY, AA SIZE (mA-h)</th>
<th>MAX4291 OPERATING TIME IN NORMAL MODE (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkaline (2 cells)</td>
<td>No</td>
<td>3.0</td>
<td>1.8</td>
<td>2000</td>
<td>20,000</td>
</tr>
<tr>
<td>Nickel-Cadmium (2 cells)</td>
<td>Yes</td>
<td>2.4</td>
<td>1.8</td>
<td>750</td>
<td>7500</td>
</tr>
<tr>
<td>Lithium-Ion (1 cell)</td>
<td>Yes</td>
<td>3.5</td>
<td>2.7</td>
<td>1000</td>
<td>10,000</td>
</tr>
<tr>
<td>Nickel-Metal-Hydride (2 cells)</td>
<td>Yes</td>
<td>2.4</td>
<td>1.8</td>
<td>1000</td>
<td>10,000</td>
</tr>
</tbody>
</table>

---

Figure 2. Input Protection Circuit

Rail-to-Rail Output Stage

The MAX4291/MAX4292/MAX4294 output stage can drive up to a 2kΩ load and still swing to within 46mV of the rails. Figure 3 shows the output-voltage swing of a MAX4291 configured as a unity-gain buffer, powered from a ±2.5V supply. The output for this setup typically swings from \((V_{\text{IEE}} + 25\text{mV})\) to \((V_{\text{CC}} - 2\text{mV})\) with a 100kΩ load.

---

Applications Information

Power-Supply Considerations

The MAX4291/MAX4292/MAX4294 operate from a single 1.8V to 5.5V supply (or dual ±0.9V to ±2.75V supplies) and consume only 100µA of supply current per amplifier. A high power-supply rejection ratio of 100dB allows the amplifiers to be powered directly off a decaying battery voltage, simplifying design and extending battery life.

The MAX4291/MAX4292/MAX4294 are ideally suited for use with most battery-powered systems. Table 1 lists a

---

Ultra-Small, 1.8V, µPower, Rail-to-Rail I/O Op Amps

MAX4291/MAX4292/MAX4294

ULTRA-SMALL, 1.8V, µPOWER, RAIL-TO-RAIL I/O OP AMPS

MAX4291/MAX4292/MAX4294

Table 1. MAX4291 Characteristics with Typical Battery Systems

<table>
<thead>
<tr>
<th>BATTERY TYPE</th>
<th>RECHARGEABLE</th>
<th>( V_{\text{FRESH}} ) (V)</th>
<th>( V_{\text{END-OF-LIFE}} ) (V)</th>
<th>CAPACITY, AA SIZE (mA-h)</th>
<th>MAX4291 OPERATING TIME IN NORMAL MODE (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkaline (2 cells)</td>
<td>No</td>
<td>3.0</td>
<td>1.8</td>
<td>2000</td>
<td>20,000</td>
</tr>
<tr>
<td>Nickel-Cadmium (2 cells)</td>
<td>Yes</td>
<td>2.4</td>
<td>1.8</td>
<td>750</td>
<td>7500</td>
</tr>
<tr>
<td>Lithium-Ion (1 cell)</td>
<td>Yes</td>
<td>3.5</td>
<td>2.7</td>
<td>1000</td>
<td>10,000</td>
</tr>
<tr>
<td>Nickel-Metal-Hydride (2 cells)</td>
<td>Yes</td>
<td>2.4</td>
<td>1.8</td>
<td>1000</td>
<td>10,000</td>
</tr>
</tbody>
</table>
Ultra-Small, 1.8V, µPower, Rail-to-Rail I/O Op Amps

variety of typical battery types showing voltage when fresh, voltage at end-of-life, capacity, and approximate operating time from a MAX4291 (assuming nominal conditions).

Although the amplifiers are fully guaranteed over temperature for operation down to a 1.8V single supply, even lower voltage operation is possible in practice. Figures 4 and 5 show the offset voltage and supply current as a function of supply voltage and temperature.

Load-Driving Capability

The MAX4291/MAX4292/MAX4294 are fully guaranteed over temperature and supply voltage range to drive a maximum resistive load of 2kΩ to VCC/2, although heavier loads can be driven in many applications. The rail-to-rail output stage of the amplifier can be modeled as a current source when driving the load toward VCC, and as a current sink when driving the load toward VEE. The limit of this current source/sink varies with supply voltage, ambient temperature, and lot-to-lot variations of the units.

Figures 6a and 6b show the typical current source and sink capabilities of the MAX4291/MAX4292/MAX4294 family as a function of supply voltage and ambient temperature. The contours on the graph depict the output current value, based on driving the output voltage to within 50mV, 100mV, and 200mV of either power-supply rail.

For example, a MAX4291 running from a single 1.8V supply, operating at $T_A = +25^\circ C$ can source 3.5mA to
within 100mV of VCC and is capable of driving a 485Ω load resistor to VEE:

\[ R_L = \frac{(1.8V - 0.1V)}{3.5mA} = 485\Omega \text{ to } V_{EE} \]

The same application can drive a 220kΩ load resistor when terminated in VCC/2 (0.9V in this case).

Driving Capacitive Loads

The MAX4291/MAX4292/MAX4294 are unity-gain stable for loads up to 100pF (see the Load Resistor vs. Capacitive Load graph in the Typical Operating Characteristics). Applications that require greater capacitive-drive capability should use an isolation resistor between the output and the capacitive load (Figure 7). Note that this alternative results in a loss of gain accuracy because RISO forms a voltage divider with the load resistor.

Power-Supply Bypassing and Layout

The MAX4291/MAX4292/MAX4294 family operates from either a single 1.8V to 5.5V supply or dual ±0.9V to ±2.75V supplies. For single-supply operation, bypass the power supply with a 100nF capacitor to VEE (in this case GND). For dual-supply operation, both the VCC and the VEE supplies should be bypassed to ground with separate 100nF capacitors.

Good PC board layout techniques optimize performance by decreasing the amount of stray capacitance at the op amp’s inputs and output. To decrease stray capacitance, minimize trace lengths and widths by placing external components as close as possible to the op amp. Surface-mount components are an excellent choice.

Using the MAX4291/MAX4292/MAX4294 as Comparators

Although optimized for use as operational amplifiers, the MAX4291/MAX4292/MAX4294 can also be used as rail-to-rail I/O comparators. Typical propagation delay depends on the input overdrive voltage, as shown in Figure 8. External hysteresis can be used to minimize the risk of output oscillation. The positive feedback circuit, shown in Figure 9, causes the input threshold to change when the output voltage changes state. The two thresholds create a hysteresis band that can be calculated by the following equations:
When the output of the comparator is low, the supply current increases. The output stage has biasing circuitry to monitor the output current. When the amplifier is used as a comparator, the output stage is overdriven and the current through the biasing circuitry increases to maximum. For the MAX4291, typical supply currents increase to 1.5mA with \( V_{CC} = 1.8V \) and to 9mA when \( V_{CC} = 5.0V \) (Figure 10).

Using the MAX4291/MAX4292/MAX4294 as Low-Power Current Monitors

The MAX4291/MAX4292/MAX4294 are ideal for applications powered from a two-cell battery stack. Figure 11 shows an application circuit in which the MAX4291 is used for monitoring the current of a two-cell battery stack. In this circuit, a current load is applied, and the voltage drop at the battery terminal is sensed.

The voltage on the load side of the battery stack is equal to the voltage at the emitter of Q1 due to the feedback loop containing the op amp. As the load current increases, the voltage drop across R1 and R2 increases. Thus, R2 provides a fraction of the load current (set by the ratio of R1 and R2) that flows into the emitter of the PNP transistor. Neglecting PNP base current, this current flows into R3, producing a ground-referenced voltage proportional to the load current. To minimize errors, scale R1 to give a voltage drop that is large enough in comparison to the op amp’s \( V_{OS} \).

Calculate the output voltage of the application using the following equation:

\[
V_{OUT} = \left[ (R1 \times R2) \times R3 \right]
\]
For a 1V output and a current load of 50mA, the choice of resistors can be $R_1 = 2\, \Omega$, $R_2 = 100k\, \Omega$, and $R_3 = 1M\, \Omega$.

**UCSP Information**

**Layout Issues**

Design the layout for the IC to be as compact as possible to minimize parasitics. The UCSP uses a bump pitch of 0.5mm (19.7mil) and bump diameter of 0.3 (~12mil). Therefore, lay out the solder-pad spacing on 0.5mm (19.7mil) centers, using a pad size of 0.25mm (~10mil) and a solder mask opening of 0.33mm (13mil). Round or square pads are permissible. Connect multiple vias from the ground plane as close to the ground pins as possible.

Install capacitors as close as possible to the IC supply voltage pin. Place the ground end of these capacitors near the IC GND pins to provide a low-impedance return path for the signal current.

**Prototype Chip Installation**

Alignment keys on the PC board, around the area where the chip is located, will be helpful in the prototype assembly process. It is better to align the chip on the board before any other components are placed, and then place the board on a hot plate or hot surface until the solder starts melting. Remove the board from the hot plate without disturbing the position of the chip and let it cool down to room temperature before processing the board further.

**UCSP Reliability**

The UCSP represents a unique packaging form factor that may not perform as well as a packaged product through traditional mechanical reliability tests. UCSP reliability is integrally linked to the user’s assembly methods, circuit board material, and usage environment. The user should closely review these areas when considering use of a UCSP.

Performance through operating-life test and moisture resistance remains uncompromised. The wafer-fabrication process primarily determines the performance. Mechanical stress performance is a greater consideration for UCSPs. UCSPs are attached through direct solder contact to the user’s PC board, foregoing the inherent stress relief of a packaged product lead frame. Solder-joint contact integrity must be considered. Comprehensive reliability tests have been performed and are available upon request. In conclusion, the UCSP performs reliably through environmental stresses.
Ultra-Small, 1.8V, μPower, Rail-to-Rail I/O Op Amps

Pin Configurations (continued)

TOP VIEW

Chip Information

MAX4291 TRANSISTOR COUNT: 149
MAX4292 TRANSISTOR COUNT: 356
MAX4294 TRANSISTOR COUNT: 747
PROCESS: BICMOS
Ultra-Small, 1.8V, µPower, Rail-to-Rail I/O Op Amps

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)
Ultra-Small, 1.8V, µPower, Rail-to-Rail I/O Op Amps

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Note: The MAX4292 does not have an exposed pad.

Note: The MAX4294 does not have an exposed pad.
Ultra-Small, 1.8V, µPower, Rail-to-Rail I/O Op Amps

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)
Ultra-Small, 1.8V, μPower, Rail-to-Rail I/O Op Amps

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

NOTES:
1. ALL DIMENSIONS ARE IN MILLIMETERS.
2. MEETS JEDEC MO-195.
3. PACKAGE OUTLINE, 3x3 UCSP

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.