General Description

The MAX381/MAX383/MAX385 are precision, low-voltage analog switches. The single-pole single-throw MAX381 and double-pole single-throw MAX385 dual switches are normally open. The single-pole double-throw MAX383 has two normally open and two normally closed poles. All three parts offer low on-resistance (less than 35Ω), guaranteed to match to within 2Ω between channels and to remain flat over the specified analog signal range (4Ω max). They also offer low leakage (less than 250pA at +25°C and less than 2.5nA at +85°C) and fast switching (turn-on time less than 175ns and turn-off time less than 100ns).

The MAX381/MAX383/MAX385 are fabricated with Maxim's low-voltage silicon-gate process for high system accuracy. Design improvements guarantee extremely low charge injection (<5pC) and low power consumption (<10µW).

These monolithic switches operate with a single positive supply (+3V to +15V) or with split supplies (±3V to ±8V) while retaining CMOS-logic input compatibility and fast switching. CMOS inputs provide reduced input loading.

Features

- Single-Supply Operation (+3V to +15V)
- Bipolar-Supply Operation (±3V to ±8V)
- Pin-Compatible with DG401/DG403/DG405
- Low On-Resistance, 20Ω (Typical 35Ω Max)
- Guaranteed Matched On-Resistance Between Channels, <2Ω
- Guaranteed Flat On-Resistance over Specified Analog Signal Range, <4Ω
- Guaranteed Charge Injection, <5pC
- Guaranteed Off-Channel Leakage, <2.5nA at +85°C
- TTL/CMOS-Logic Compatible with 3V, 5V, ±3V, and ±5V Supplies
- Rail-to-Rail Analog Signal Handling Capability

Ordering Information

<table>
<thead>
<tr>
<th>PART</th>
<th>TEMP. RANGE</th>
<th>PIN-PACKAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX381CPE</td>
<td>0°C to +70°C</td>
<td>16 Plastic DIP</td>
</tr>
<tr>
<td>MAX381CSE</td>
<td>0°C to +70°C</td>
<td>16 Narrow SO</td>
</tr>
<tr>
<td>MAX381C/D</td>
<td>0°C to +70°C</td>
<td>Dice*</td>
</tr>
<tr>
<td>MAX381EPE</td>
<td>-40°C to +85°C</td>
<td>16 Plastic DIP</td>
</tr>
<tr>
<td>MAX381ESE</td>
<td>-40°C to +85°C</td>
<td>16 Narrow SO</td>
</tr>
<tr>
<td>MAX381EJE</td>
<td>-40°C to +85°C</td>
<td>16 CERDIP**</td>
</tr>
<tr>
<td>MAX381MJE</td>
<td>-55°C to +125°C</td>
<td>16 CERDIP**</td>
</tr>
</tbody>
</table>

Ordering Information continued on last page.

* Dice are tested at TA = +25°C only.
** Contact factory for package availability.

Applications

- Sample-and-Hold Circuits
- Military Radios
- Test Equipment
- Communication Systems
- Heads-Up Displays
- Battery-Operated Systems
- Audio Signal Routing
- PBX, PABX
- Guidance and Control Systems

Pin Configurations/Block Diagrams/Truth Tables

TOP VIEW

<table>
<thead>
<tr>
<th>MAX381</th>
<th>COM1</th>
<th>16</th>
<th>NO1</th>
<th>1</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>N.C.</td>
<td>2</td>
<td>15</td>
<td>IN1</td>
<td>2</td>
<td>14</td>
</tr>
<tr>
<td>N.C.</td>
<td>3</td>
<td>14</td>
<td>GND</td>
<td>3</td>
<td>13</td>
</tr>
<tr>
<td>N.C.</td>
<td>4</td>
<td>13</td>
<td>N.C.</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>N.C.</td>
<td>5</td>
<td>12</td>
<td>N.C.</td>
<td>5</td>
<td>11</td>
</tr>
<tr>
<td>N.C.</td>
<td>6</td>
<td>11</td>
<td>V+</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>N.C.</td>
<td>7</td>
<td>10</td>
<td>IN2</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>COM2</td>
<td>8</td>
<td>9</td>
<td>NO2</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

MAX383

<table>
<thead>
<tr>
<th>MAX383</th>
<th>COM1</th>
<th>16</th>
<th>NO1</th>
<th>1</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>N.C.</td>
<td>2</td>
<td>15</td>
<td>IN1</td>
<td>2</td>
<td>14</td>
</tr>
<tr>
<td>N.C.</td>
<td>3</td>
<td>14</td>
<td>GND</td>
<td>3</td>
<td>13</td>
</tr>
<tr>
<td>N.C.</td>
<td>4</td>
<td>13</td>
<td>N.C.</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>N.C.</td>
<td>5</td>
<td>12</td>
<td>N.C.</td>
<td>5</td>
<td>11</td>
</tr>
<tr>
<td>N.C.</td>
<td>6</td>
<td>11</td>
<td>V+</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>N.C.</td>
<td>7</td>
<td>10</td>
<td>IN2</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>COM2</td>
<td>8</td>
<td>9</td>
<td>NO2</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

MAX385

<table>
<thead>
<tr>
<th>MAX385</th>
<th>COM1</th>
<th>16</th>
<th>NO1</th>
<th>1</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>N.C.</td>
<td>2</td>
<td>15</td>
<td>IN1</td>
<td>2</td>
<td>14</td>
</tr>
<tr>
<td>N.C.</td>
<td>3</td>
<td>14</td>
<td>GND</td>
<td>3</td>
<td>13</td>
</tr>
<tr>
<td>N.C.</td>
<td>4</td>
<td>13</td>
<td>N.C.</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>N.C.</td>
<td>5</td>
<td>12</td>
<td>N.C.</td>
<td>5</td>
<td>11</td>
</tr>
<tr>
<td>N.C.</td>
<td>6</td>
<td>11</td>
<td>V+</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>N.C.</td>
<td>7</td>
<td>10</td>
<td>IN2</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>COM2</td>
<td>8</td>
<td>9</td>
<td>NO2</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

Truth Tables

<table>
<thead>
<tr>
<th>MAX381</th>
<th>LOGIC IN</th>
<th>SWITCH</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>1</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td>PWR OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MAX383</th>
<th>LOGIC IN</th>
<th>COM</th>
<th>NC</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>NC</td>
<td>COM</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>NO</td>
<td>OFF</td>
<td>COM</td>
<td></td>
</tr>
<tr>
<td>PWR OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MAX385</th>
<th>LOGIC IN</th>
<th>COM</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>OFF</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>ON</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>PWR OFF</td>
<td>OFF</td>
<td>OFF</td>
<td></td>
</tr>
</tbody>
</table>

Call toll free 1-800-998-8800 for free samples or literature.
Precision, Low-Voltage Analog Switches

ABSOLUTE MAXIMUM RATINGS

Voltage Referenced to GND
- V_+: $-0.3V$ to $+17V$
- V_-: $+0.3V$ to $-17V$
- V_+ to V_-: $-0.3V$ to $+17V$
- V_+ or $V_- = 30mA$
- V_+ or $V_- = 30mA$

Continuous Current, any pin: $30mA$
Peak Current, any pin (pulsed at 1ms, 10% duty cycle max): $100mA$

Continuous Power Dissipation ($T_A = +70°C$)
- Plastic DIP (derate 10.53mW/°C above+70°C): $842mW$
- Narrow SO (derate 8.70mW/°C above +70°C): $696mW$
- CERDIP (derate 10.00mW/°C above +70°C): $800mW$

Operating Temperature Ranges
- MAX381, MAX383: $0°C$ to $+70°C$
- MAX381, MAX383: $-40°C$ to $+85°C$
- MAX381, MAX383: $-55°C$ to $+125°C$
- Storage Temperature Range: $-65°C$ to $+150°C$
- Lead Temperature (soldering, 10sec): $+300°C$

Note 1: Signals on NC, NO, COM, or IN exceeding V_+ or V_- are clamped by internal diodes. Limit forward diode current to maximum current rating.

Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—Dual Supplies

$(V_+ = +5V \pm 10\%, V_- = -5V \pm 10\%, GND = 0V, V_{INH} = 2.4V, V_{INL} = 0.8V, T_A = T_{MIN}$ to T_{MAX}, unless otherwise noted.)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>CONDITIONS</th>
<th>TEMP. RANGE</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog Signal Range</td>
<td>V_{COM}, V_{NO}, V_{NC}</td>
<td>(Note 3)</td>
<td>V_- V_+ V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>On-Resistance</td>
<td>R_{ON}</td>
<td>$V_+ = 4.5V$, $V_- = -4.5V$, V_{NC} or $V_{NO} = \pm 3.5V$, $V_{INH} = 2.4V$, $V_{INL} = 0.8V$</td>
<td>$T_A = +25°C$</td>
<td>C, E</td>
<td>20</td>
<td>35</td>
<td>Ω</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>M</td>
<td>20</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C, E, M</td>
<td>45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>On-Resistance Match Between Channels (Note 4)</td>
<td>ΔR_{ON}</td>
<td>V_{NC} or $V_{NO} = \pm 3V$, $V_{INH} = -10mA$, $V_+ = 5V$, $V_- = -5V$</td>
<td>$T_A = +25°C$</td>
<td>C, E, M</td>
<td>0.5</td>
<td>2</td>
<td>Ω</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$T_A = T_{MIN}$ to T_{MAX}</td>
<td>C, E, M</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>On-Resistance Flatness (Note 4)</td>
<td>$R_{FLAT(ON)}$</td>
<td>V_{NC} or $V_{NO} = 3V$, $0V$, $-3V$: $I_{COM} = -10mA$, $V_+ = 5V$, $V_- = -5V$</td>
<td>$T_A = +25°C$</td>
<td>C, E, M</td>
<td>4</td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$T_A = T_{MIN}$ to T_{MAX}</td>
<td>C, E, M</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NC or NO Off Leakage Current (Note 5)</td>
<td>$I_{NC(OFF)}$ or $I_{NO(OFF)}$</td>
<td>$V_{COM} = \pm 4.5V$, V_{NC} or $V_{NO} = \pm 4.5V$, $V_+ = 5.5V$, $V_- = -5.5V$</td>
<td>$T_A = +25°C$</td>
<td>C, E</td>
<td>-0.2</td>
<td>-0.01</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>M</td>
<td>-0.1</td>
<td>-0.01</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$T_A = T_{MIN}$ to T_{MAX}</td>
<td>C, E</td>
<td>-2.5</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>M</td>
<td>-5.0</td>
<td>5.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COM Off Leakage Current (Note 5)</td>
<td>$I_{COM(OFF)}$</td>
<td>$V_{COM} = \pm 4.5V$, V_{NC} or $V_{NO} = \pm 4.5V$, $V_+ = 5.5V$, $V_- = -5.5V$</td>
<td>$T_A = +25°C$</td>
<td>C, E</td>
<td>-0.2</td>
<td>-0.01</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>M</td>
<td>-0.1</td>
<td>-0.01</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$T_A = T_{MIN}$ to T_{MAX}</td>
<td>C, E</td>
<td>-2.5</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>M</td>
<td>-5.0</td>
<td>5.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COM On Leakage Current (Note 5)</td>
<td>$I_{COM(ON)}$</td>
<td>$V_{COM} = \pm 4.5V$, V_{NC} or $V_{NO} = \pm 4.5V$, $V_+ = 5.5V$, $V_- = -5.5V$</td>
<td>$T_A = +25°C$</td>
<td>C, E</td>
<td>-0.4</td>
<td>-0.04</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>M</td>
<td>-0.2</td>
<td>-0.04</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$T_A = T_{MIN}$ to T_{MAX}</td>
<td>C, E</td>
<td>-5.0</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>M</td>
<td>-20.0</td>
<td>20.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Precision, Low-Voltage Analog Switches

ELECTRICAL CHARACTERISTICS—Dual Supplies (continued)

(V+ = +5V ±10%, V- = -5V ±10%, GND = 0V, VINH = 2.4V, VINL = 0.8V, TA = TMIN to TMAX, unless otherwise noted.)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIGITAL LOGIC INPUT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Current with Input Voltage High</td>
<td>IINH</td>
<td>VIN = 2.4V, all others = 0.8V</td>
<td>-1.0</td>
<td>0.005</td>
<td>1.0</td>
<td>µA</td>
</tr>
<tr>
<td>Input Current with Input Voltage Low</td>
<td>IINL</td>
<td>VIN = 0.8V, all others = 2.4V</td>
<td>-1.0</td>
<td>0.005</td>
<td>1.0</td>
<td>µA</td>
</tr>
<tr>
<td>Logic High Input Voltage</td>
<td>VAH</td>
<td>TA = TMIN to TMAX</td>
<td>2.4</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Logic Low Input Voltage</td>
<td>VAL</td>
<td>TA = TMIN to TMAX</td>
<td>0.8</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>DYNAMIC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-On Time</td>
<td>tON</td>
<td>VCOM = 3V, Figure 2</td>
<td>TA = +25°C</td>
<td>100</td>
<td>175</td>
<td>ns</td>
</tr>
<tr>
<td>Turn-Off Time</td>
<td>tOFF</td>
<td>VCOM = 3V, Figure 2</td>
<td>TA = +25°C</td>
<td>60</td>
<td>100</td>
<td>ns</td>
</tr>
<tr>
<td>Break-Before-Make Time Delay</td>
<td>tD</td>
<td>MAX383 only, Figure 3</td>
<td>TA = +25°C</td>
<td>10</td>
<td>20</td>
<td>ns</td>
</tr>
<tr>
<td>Charge Injection (Note 3)</td>
<td>VCTE</td>
<td>CCL = 1.0nF, VGEN = 0V, RGEN = 0Ω, Figure 4</td>
<td>TA = +25°C</td>
<td>2</td>
<td>5</td>
<td>pC</td>
</tr>
<tr>
<td>Off Isolation (Note 6)</td>
<td>VISO</td>
<td>RCL = 100Ω, CL = 5pF, f = 1MHz, Figure 5</td>
<td>TA = +25°C</td>
<td>72</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Crosstalk (Note 7)</td>
<td>VCT</td>
<td>RCL = 50Ω, CL = 5pF, f = 1MHz, Figure 6</td>
<td>TA = +25°C</td>
<td>90</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Off Capacitance</td>
<td>COFF</td>
<td>f = 1MHz, Figure 7</td>
<td>TA = +25°C</td>
<td>12</td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>COM Off Capacitance</td>
<td>CCOM(OFF)</td>
<td>f = 1MHz, Figure 7</td>
<td>TA = +25°C</td>
<td>12</td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>Channel On Capacitance</td>
<td>CCOM(ON)</td>
<td>f = 1MHz, Figure 8</td>
<td>TA = +25°C</td>
<td>39</td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>SUPPLY</td>
<td></td>
<td></td>
<td>±3</td>
<td>±8</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Positive Supply Current</td>
<td>I+</td>
<td>All channels on or off, V+ = 5.5V, V- = -5.5V, VIN = 0V or V+</td>
<td>-1.0</td>
<td>0.06</td>
<td>1.0</td>
<td>µA</td>
</tr>
<tr>
<td>Negative Supply Current</td>
<td>I-</td>
<td>All channels on or off, V+ = 5.5V, V- = -5.5V, VIN = 0V or V+</td>
<td>-1.0</td>
<td>-0.01</td>
<td>1.0</td>
<td>µA</td>
</tr>
</tbody>
</table>

Note 2: The algebraic convention, where the most negative value is a minimum and the most positive value a maximum, is used in this data sheet.

Note 3: Guaranteed by design.

Note 4: \(\Delta R_{ON} = R_{ON}(\text{max}) - R_{ON}(\text{min}) \). On-resistance match between channels and flatness are guaranteed only with specified voltages. Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal range.

Note 5: Leakage parameters are 100% tested at maximum rated hot temperature and guaranteed by correlation at room temperature.

Note 6: See Figure 4. Off isolation = 20log10 VCOM/VNO or VNO, VCOM = output, VNO or NO = input to off switch.

Note 7: Between any two switches. See Figure 5.

Note 8: Leakage testing at single supply is guaranteed by testing with dual supplies.
ELECTRICAL CHARACTERISTICS—Single +5V Supply

(V+ = +5V ±10%, V- = 0V, GND = 0V, VINH = 2.4V, VINL = 0.8V, TA = TMIN to TMAX, unless otherwise noted.)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>CONDITIONS</th>
<th>TEMP. RANGE</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWITCH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analog Signal Range</td>
<td>VCOM,</td>
<td>V+ = 5.0V, V- = 0V, VNC or VNO = 3.5V, ICOM = 1.0mA, VINH = 2.4V, VINL = 0.8V</td>
<td>TA = +25°C</td>
<td>C, E</td>
<td>25</td>
<td>65</td>
<td>Ω</td>
</tr>
<tr>
<td>On-Resistance</td>
<td>RON</td>
<td></td>
<td>TA = TMIN to TMAX</td>
<td>C, E, M</td>
<td>60</td>
<td>75</td>
<td>Ω</td>
</tr>
<tr>
<td>On-Resistance Match Between Channels (Note 4)</td>
<td>∆RON</td>
<td>VNC or VNO = 3V, ICOM = 1.0mA, V+ = 5V</td>
<td>TA = +25°C</td>
<td>C, E, M</td>
<td>0.5</td>
<td>2</td>
<td>Ω</td>
</tr>
<tr>
<td>On-Resistance Flatness (Note 4)</td>
<td>RFLAT(ON)</td>
<td>VNC or VNO = 3V, 2V, 1V; ICOM = 1.0mA; V+ = 5V, V- = 0V</td>
<td>TA = +25°C</td>
<td>C, E, M</td>
<td>6</td>
<td>4</td>
<td>Ω</td>
</tr>
<tr>
<td>NC or NO Off Leakage Current (Note 8)</td>
<td>INC(OFF)</td>
<td>VCOM = 0V, VNC or VNO = 4.5V, V+ = 5.5V, V- = 0V</td>
<td>TA = +25°C</td>
<td>C, E</td>
<td>-0.2</td>
<td>-0.01</td>
<td>0.2 nA</td>
</tr>
<tr>
<td>DPIA (Note 4)</td>
<td>IC(DI)</td>
<td>VCOM = 4.5V, VNC or VNO = 0, V+ = 5.5V, V- = 0V</td>
<td>TA = TMIN to TMAX</td>
<td>C, E</td>
<td>-0.2</td>
<td>-0.01</td>
<td>0.2 nA</td>
</tr>
<tr>
<td>COM Off Leakage Current (Note 8)</td>
<td>ICOM(OFF)</td>
<td>VCOM = 4.5V, VNC or VNO = 4.5, V+ = 5.5V, V- = 0V</td>
<td>TA = +25°C</td>
<td>C, E</td>
<td>-0.4</td>
<td>-0.04</td>
<td>0.4 nA</td>
</tr>
<tr>
<td>COM On Leakage Current (Note 8)</td>
<td>ICOM(ON)</td>
<td>V+ = 5.0V, all others = 0.8V</td>
<td>TA = TMIN to TMAX</td>
<td>C, E</td>
<td>-0.4</td>
<td>-0.04</td>
<td>0.4 nA</td>
</tr>
<tr>
<td>DIGITAL LOGIC INPUT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Current with Input Voltage High</td>
<td>INH</td>
<td>VIN = 2.4V, all others = 0.8V</td>
<td>-1.0</td>
<td>0.005</td>
<td>1.0</td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td>Input Current with Input Voltage Low</td>
<td>INL</td>
<td>VIN = 0.8V, all others = 2.4V</td>
<td>-1.0</td>
<td>0.005</td>
<td>1.0</td>
<td>µA</td>
<td></td>
</tr>
</tbody>
</table>
ELECTRICAL CHARACTERISTICS—Single +5V Supply (continued)

(V+ = +5V ±10%, V- = 0V, GND = 0V, VINH = 2.4V, VINL = 0.8V, TA = TMIN to TMAX, unless otherwise noted.)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>MAX</th>
<th>TA</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DYNAMIC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-On Time</td>
<td>tON</td>
<td>VCOM = 3V, Figure 2</td>
<td>160</td>
<td>250</td>
<td>TA = +25°C</td>
<td>ns</td>
</tr>
<tr>
<td>Turn-Off Time</td>
<td>tOFF</td>
<td>VCOM = 3V, Figure 2</td>
<td>60</td>
<td>125</td>
<td>TA = TMIN to TMAX</td>
<td>ns</td>
</tr>
<tr>
<td>Break-Before-Make Time Delay (Note 3)</td>
<td>tD</td>
<td>MAX383 only</td>
<td>10</td>
<td>20</td>
<td>TA = +25°C</td>
<td>ns</td>
</tr>
<tr>
<td>Charge Injection (Note 3)</td>
<td>VCTE</td>
<td>CL = 1.0nF, VGEN = 0V, RGEN = 0Ω</td>
<td>2</td>
<td>5</td>
<td>TA = +25°C</td>
<td>pC</td>
</tr>
</tbody>
</table>

SUPPLY						
Power-Supply Range	V+		2.7	16	V	
Positive Supply Current	I+	All channels on or off, VIN = 0V or V+, V+ = 5.5V, V- = 0V	-1.0	0.01	1.0	µA
Negative Supply Current	I-	All channels on or off, VIN = 0V or V+, V+ = 5.5V, V- = 0V	-1.0	-0.01	1.0	µA

ELECTRICAL CHARACTERISTICS—Single +3.3V Supply

(V+ = 3.0V to 3.6V, GND = 0V, VINH = 2.4V, VINL = 0.8V, TA = TMIN to TMAX, unless otherwise noted.)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>CONDITIONS</th>
<th>TEMP. RANGE</th>
<th>MIN</th>
<th>MAX</th>
<th>TA</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWITCH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analog Signal Range</td>
<td>VCOM, VNO, VINC</td>
<td>(Note 3)</td>
<td>0V</td>
<td>V+</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>On-Resistance</td>
<td>RON</td>
<td>V+ = 3V, V- = 0V, VNC or VNO = 1.5V, ICOM = 1.0mA, VINH = 2.4V, VINL = 0.8V</td>
<td>TA = +25°C</td>
<td>C, E</td>
<td>75</td>
<td>185</td>
<td>175</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TA = TMIN to TMAX</td>
<td>C, E, M</td>
<td>250</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NC or NO Off Leakage Current (Note 8)</td>
<td>INC(Off), or IN0(Off)</td>
<td>VCOM = 0V, VNC or VNO = 0V, V+ = 3.6V, V- = 0V</td>
<td>TA = +25°C</td>
<td>C, E</td>
<td>-0.2</td>
<td>-0.01</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TA = TMIN to TMAX</td>
<td>C, E</td>
<td>-0.1</td>
<td>-0.01</td>
<td>0.1</td>
</tr>
<tr>
<td>COM Off Leakage Current (Note 8)</td>
<td>ICOM(Off)</td>
<td>VCOM = 3V, VNC or VNO = 0V, V+ = 3.6V, V- = 0V</td>
<td>TA = +25°C</td>
<td>C, E</td>
<td>-2.5</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TA = TMIN to TMAX</td>
<td>C, E</td>
<td>-5.0</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>COM On Leakage Current (Note 8)</td>
<td>ICOM(On)</td>
<td>VCOM = 3V, VNC or VNO = 3V, V+ = 3.6V, V- = 0V</td>
<td>TA = +25°C</td>
<td>C, E</td>
<td>-0.4</td>
<td>-0.04</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TA = TMIN to TMAX</td>
<td>C, E</td>
<td>-2.0</td>
<td>-0.04</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TA = TMIN to TMAX</td>
<td>C, E</td>
<td>-5.0</td>
<td>5.0</td>
<td></td>
</tr>
</tbody>
</table>

MAXIM
Precision, Low-Voltage Analog Switches

ELECTRICAL CHARACTERISTICS—Single +3.3V Supply (continued)
(V+ = 3.0V to 3.6V, GND = 0V, VINH = 2.4V, FINL = 0.8V, TA = TMIN to TMAX, unless otherwise noted.)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIGITAL LOGIC INPUT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Current with Input Voltage High</td>
<td>IINH</td>
<td>VIN = 2.4V, all others = 0.8V</td>
<td>-1.0</td>
<td>0.005</td>
<td>1.0</td>
<td>µA</td>
</tr>
<tr>
<td>Input Current with Input Voltage Low</td>
<td>IINL</td>
<td>VIN = 0.8V, all others = 2.4V</td>
<td>-1.0</td>
<td>0.005</td>
<td>1.0</td>
<td>µA</td>
</tr>
<tr>
<td>DYNAMIC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-On Time (Note 3)</td>
<td>tON</td>
<td>VCOM = 1.5V, Figure 2</td>
<td>TA = +25°C</td>
<td>400</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Turn-Off Time (Note 3)</td>
<td>tOFF</td>
<td>VCOM = 1.5V, Figure 2</td>
<td>TA = +25°C</td>
<td>150</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Break-Before-Make Time Delay (Note 3)</td>
<td>tD</td>
<td>MAX383 only</td>
<td>TA = +25°C</td>
<td>10</td>
<td>20</td>
<td>ns</td>
</tr>
<tr>
<td>Charge Injection (Note 3)</td>
<td>VCTE</td>
<td>CL = 1.0nF, VGEN = 0V, RGEN = 0Ω</td>
<td>TA = +25°C</td>
<td>1</td>
<td>5</td>
<td>pC</td>
</tr>
<tr>
<td>SUPPLY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power-Supply Range</td>
<td>V+</td>
<td></td>
<td></td>
<td>2.7</td>
<td>16</td>
<td>V</td>
</tr>
<tr>
<td>Positive Supply Current</td>
<td>I+</td>
<td>All channels on or off, VIN = 0V or V+, V+ = 3.6V, V- = 0V</td>
<td>-1.0</td>
<td>0.01</td>
<td>1.0</td>
<td>µA</td>
</tr>
<tr>
<td>Negative Supply Current</td>
<td>I-</td>
<td>All channels on or off, VIN = 0V or V+, V+ = 3.6V, V- = 0V</td>
<td>-1.0</td>
<td>-0.01</td>
<td>1.0</td>
<td>µA</td>
</tr>
</tbody>
</table>

Typical Operating Characteristics
(TA = +25°C, unless otherwise noted.)

![Graphs showing on-resistance vs. VCOM and temperature](image-url)
Typical Operating Characteristics (continued)

(T\textsubscript{A} = +25°C, unless otherwise noted.)

ON-RESISTANCE vs. V\textsubscript{COM} AND TEMPERATURE (SINGLE SUPPLY)

OFF LEAKAGE CURRENT vs. TEMPERATURE

ON LEAKAGE CURRENT vs. TEMPERATURE

CHARGE INJECTION vs. V\textsubscript{COM}

SUPPLY CURRENT vs. TEMPERATURE

MAX383 SUPPLY CURRENT vs. LOGIC INPUT VOLTAGE (BOTH INPUTS DRIVEN)

MAX383 SUPPLY CURRENT vs. LOGIC INPUT FREQUENCY (BOTH INPUTS DRIVEN)
Applications Information

Operation with Supply Voltages Other than ±5V

The MAX381/MAX383/MAX385 switches operate with ±3.0V to ±8V bipolar supplies and a +3V to +15V single supply. In either case, analog signals ranging from V+ to V- can be switched. The Typical Operating Characteristics graphs show the typical on-resistance variation with analog signal and supply voltage. The usual on-resistance temperature coefficient is 0.5%/°C (typ).

Overvoltage Protection

Proper power-supply sequencing is recommended for all CMOS devices. Do not exceed the absolute maximum ratings, because stresses beyond the listed ratings can cause permanent damage to the devices. Always sequence V+ on first, then V-, followed by the logic inputs, NO, or COM. If power-supply sequencing is not possible, add two small signal diodes (D1, D2) in series with supply pins for overvoltage protection (Figure 1). Adding diodes reduces the analog signal range to one diode drop below V+ and one diode drop above V-, but does not affect the devices’ low switch resistance and low leakage characteristics. Device operation is unchanged, and the difference between V+ and V- should not exceed 17V. These protection diodes are not recommended when using a single 3V supply.

Figure 1. Overvoltage Protection Using Two External Blocking Diodes
Precision, Low-Voltage Analog Switches

Test Circuits/Timing Diagrams

Figure 2. Switching-Time Test Circuit

Figure 3. Break-Before-Make Test Circuit (MAX383 only)

Figure 4. Charge-Injection Test Circuit
Precision, Low-Voltage Analog Switches

Test Circuits/Timing Diagrams (continued)

![Figure 5. Off Isolation](image5)

<table>
<thead>
<tr>
<th>FREQUENCY TESTED</th>
<th>SIGNAL GENERATOR</th>
<th>ANALYZER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1MHz</td>
<td>AUTOMATIC SYNTHESIZER</td>
<td>TRACKING SPECTRUM ANALYZER</td>
</tr>
</tbody>
</table>

Off isolation = $20\log \left(\frac{V_{COM}}{V_{NC \text{ or } NO}} \right)$

![Figure 6. Crosstalk Test Circuit](image6)

![Figure 7. Channel-Off Capacitance](image7)

![Figure 8. Channel-On Capacitance](image8)
Ordering Information (continued)

<table>
<thead>
<tr>
<th>PART</th>
<th>TEMP. RANGE</th>
<th>PIN-PACKAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX383CPE</td>
<td>0°C to +70°C</td>
<td>16 Plastic DIP</td>
</tr>
<tr>
<td>MAX383CSE</td>
<td>0°C to +70°C</td>
<td>16 Narrow SO</td>
</tr>
<tr>
<td>MAX383C/D</td>
<td>0°C to +70°C</td>
<td>Dice*</td>
</tr>
<tr>
<td>MAX383EPE</td>
<td>-40°C to +85°C</td>
<td>16 Plastic DIP</td>
</tr>
<tr>
<td>MAX383ESE</td>
<td>-40°C to +85°C</td>
<td>16 Narrow SO</td>
</tr>
<tr>
<td>MAX383EJE</td>
<td>-40°C to +85°C</td>
<td>16 CERDIP**</td>
</tr>
<tr>
<td>MAX383MJE</td>
<td>-55°C to +125°C</td>
<td>16 CERDIP**</td>
</tr>
<tr>
<td>MAX385CPE</td>
<td>0°C to +70°C</td>
<td>16 Plastic DIP</td>
</tr>
<tr>
<td>MAX385CSE</td>
<td>0°C to +70°C</td>
<td>16 Narrow SO</td>
</tr>
<tr>
<td>MAX385C/D</td>
<td>0°C to +70°C</td>
<td>Dice*</td>
</tr>
<tr>
<td>MAX385EPE</td>
<td>-40°C to +85°C</td>
<td>16 Plastic DIP</td>
</tr>
<tr>
<td>MAX385ESE</td>
<td>-40°C to +85°C</td>
<td>16 Narrow SO</td>
</tr>
<tr>
<td>MAX385EJE</td>
<td>-40°C to +85°C</td>
<td>16 CERDIP**</td>
</tr>
<tr>
<td>MAX385MJE</td>
<td>-55°C to +125°C</td>
<td>16 CERDIP**</td>
</tr>
</tbody>
</table>

* Dice are tested at $T_A = +25°C$ only.
** Contact factory for package availability.

Chip Topography

- **Transistor Count:** 57
- **Substrate Connected to V+**

Precision, Low-Voltage Analog Switches
Precision, Low-Voltage Analog Switches

Package Information

16-PIN PLASTIC SMALL-OUTLINE (NARROW) PACKAGE

16-PIN PLASTIC DUAL-IN-LINE PACKAGE

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

© 1994 Maxim Integrated Products

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 (408) 737-7600

Printed USA MAXIM is a registered trademark of Maxim Integrated Products.