General Description

The MAX3654 analog transimpedance amplifier (TIA) is designed for CATV applications in fiber-to-the-home (FTTH) networks. This high-linearity amplifier is intended for 47MHz to 870MHz subcarrier multiplexed (SCM) signals in passive optical networks (PON). A gain-control input supports AGC operation with optical inputs having -6dBm to +2dBm average power. With 62dB maximum gain at 47MHz and 18dB gain control range, the minimum RF output level is 14dBmV/channel at -6dBm optical input. A compact 4mm x 4mm package includes all of the active RF circuitry required to convert analog PIN photocurrent to a 75Ω CATV output.

This 700mW SiGe RF IC provides a low-cost, low-power integrated analog CATV receiver solution for FTTH ONTs.

Applications

FTTH Optical Network Termination (ONT)

Features

- 47MHz to 870MHz Operation
- -6dBm to +2dBm Optical Input Range
- 21dBm OIP3, 47dBm OIP2
- 5.5pA/√Hz EIN (Amplifier Alone)
- 62dB Gain at 47MHz
- 18dB Transimpedance (Gain) Control
- Integrated +4dB Gain Tilt (with Typical Photodiode)
- +5V Single-Supply Operation
- 700mW Power Dissipation
- -40°C to +85°C Operating Temperature Range
- 4mm x 4mm TQFN Package

Ordering Information

<table>
<thead>
<tr>
<th>PART</th>
<th>TEMP RANGE</th>
<th>PIN-PACKAGE</th>
<th>PKG-CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX3654ETE+</td>
<td>-40°C to +85°C</td>
<td>16 TQFN-EP*</td>
<td>T1644F-4-A</td>
</tr>
</tbody>
</table>

+ Denotes lead-free package.
*EP = Exposed pad.

Typical Application Circuit
47MHz to 870MHz Analog CATV Transimpedance Amplifier

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, VCC: -0.3V to +6.0V
IN+, IN-, VAGC, OUT+, OUT-, MUTE, HYST: -0.3V to +5.5V
TEST1, TEST2: -0.3V to +5.5V
Output Current (OUT+, OUT-): -0.3V to +5.5V

Continuous Power Dissipation, 16-Lead TQFN-EP Package:
(TA = +70°C) 1349.1mW
Operating Temperature Range: -40°C to +150°C
Storage Temperature Range: -55°C to +150°C
Lead Temperature (soldering, 10s): +300°C

Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

(VCC = +4.75V to +5.25V, typical values at VCC = +5.0V, TA = +25°C, unless otherwise noted.) (Note 1)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Current</td>
<td>ICC</td>
<td></td>
<td>136</td>
<td>170</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Gain Control Input Current</td>
<td>VAGC</td>
<td>= 1.4V</td>
<td>50</td>
<td>200</td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td>Mute Input High</td>
<td>VIH</td>
<td></td>
<td>2.0</td>
<td>60.5</td>
<td>62</td>
<td>63.5</td>
</tr>
<tr>
<td>Mute Input Low</td>
<td>VIH</td>
<td></td>
<td>0.8</td>
<td>51.5</td>
<td>53</td>
<td>54.5</td>
</tr>
<tr>
<td>Mute Input Current</td>
<td>IIH, IIL</td>
<td></td>
<td>30</td>
<td>µA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AC ELECTRICAL CHARACTERISTICS

(VCC = +4.75V to +5.25V, output ZL = 75Ω, typical values at VCC = +5.0V, TA = +25°C, unless otherwise noted.)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Frequency Range</td>
<td>f</td>
<td>47MHz to 870MHz (Notes 2, 6)</td>
<td>±0.3</td>
<td>±0.75</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>Frequency Response Flatness</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transimpedance, Differential (Zt)</td>
<td></td>
<td></td>
<td>47MHz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gain Control Stability</td>
<td>VAGC</td>
<td>= 0 to 1.4V</td>
<td>±0.75</td>
<td>±1.6</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>Gain Tilt</td>
<td></td>
<td>Linear, 870MHz compared to 47MHz</td>
<td>3</td>
<td>4</td>
<td>5.5</td>
<td>dB</td>
</tr>
<tr>
<td>Output Second-Order Intercept</td>
<td>OIP2</td>
<td>(Notes 4, 6)</td>
<td>>47</td>
<td>dBm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Third-Order Intercept</td>
<td>OIP3</td>
<td>(Notes 4, 5)</td>
<td>18</td>
<td>21</td>
<td>dBm</td>
<td></td>
</tr>
<tr>
<td>Equivalent Input Noise Including Photodiode</td>
<td>EIN</td>
<td>VAGC ≤ 0.175V (Notes 4, 6)</td>
<td>8 pA/√Hz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gain Hysteresis, Optical</td>
<td>RHYST = open</td>
<td>±0.13</td>
<td>dB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RHYST = GND</td>
<td>±0.65</td>
<td>dB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Differential Output Level, Mute</td>
<td>MUTE ≤ 0.8V, 50MHz</td>
<td>-58</td>
<td>-45</td>
<td>dBc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RF Output Return Loss</td>
<td>-S22</td>
<td>47MHz to 870MHz</td>
<td>13</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note 1: DC parameters are tested at +25°C, and guaranteed by design and characterization at -40°C and +85°C.

Note 2: Maximum difference between frequency response at any point and a straight line connecting frequency response at end points.

Note 3: Gain control stability is the maximum variation in transimpedance (over process, voltage, and temperature) for any VAGC control voltage.

Note 4: AC parameters guaranteed by design and characterization.

Note 5: OIP2 and OIP3 measured using two tones at f1 = 800MHz and f2 = 850MHz, POUT = -16dBm, VAGC = 1.4V.

Note 6: Includes the effects of a packaged photodiode having the characteristics shown in Figure 2.
47MHz to 870MHz Analog CATV Transimpedance Amplifier

Figure 1. Test Circuits for Characterization

*FOR 75Ω INPUT IMPEDANCE USE 25Ω RESISTORS AND ADTL 1-18-75

**MURATA BLM15HD182SN **TDK MLF1608 E100K 10µH
47MHz to 870MHz Analog CATV Transimpedance Amplifier

Typical Operating Characteristics

(V_{CC} = +5.0V, T_A = +25°C, unless otherwise noted.)

Figure 2. Photodiode and Header Model

Figure 3. Functional Diagram

MAX3654

Typical Operating Characteristics

Maximum Gain vs. Frequency (V_{AGC} = 0V)

Gain vs. Control Voltage

Gain Tilt vs. Control Voltage and Temperature

Figure 2. Photodiode and Header Model

Figure 3. Functional Diagram

MAX3654

47MHz to 870MHz Analog CATV Transimpedance Amplifier

Typical Operating Characteristics

(V_{CC} = +5.0V, T_A = +25°C, unless otherwise noted.)

Figure 2. Photodiode and Header Model

Figure 3. Functional Diagram

MAX3654

47MHz to 870MHz Analog CATV Transimpedance Amplifier

Typical Operating Characteristics

(V_{CC} = +5.0V, T_A = +25°C, unless otherwise noted.)

Figure 2. Photodiode and Header Model

Figure 3. Functional Diagram

MAX3654

47MHz to 870MHz Analog CATV Transimpedance Amplifier

Typical Operating Characteristics

(V_{CC} = +5.0V, T_A = +25°C, unless otherwise noted.)

Figure 2. Photodiode and Header Model

Figure 3. Functional Diagram

MAX3654

47MHz to 870MHz Analog CATV Transimpedance Amplifier

Typical Operating Characteristics

(V_{CC} = +5.0V, T_A = +25°C, unless otherwise noted.)

Figure 2. Photodiode and Header Model

Figure 3. Functional Diagram

MAX3654

47MHz to 870MHz Analog CATV Transimpedance Amplifier

Typical Operating Characteristics

(V_{CC} = +5.0V, T_A = +25°C, unless otherwise noted.)

Figure 2. Photodiode and Header Model

Figure 3. Functional Diagram

MAX3654

47MHz to 870MHz Analog CATV Transimpedance Amplifier

Typical Operating Characteristics

(V_{CC} = +5.0V, T_A = +25°C, unless otherwise noted.)

Figure 2. Photodiode and Header Model

Figure 3. Functional Diagram

MAX3654

47MHz to 870MHz Analog CATV Transimpedance Amplifier

Typical Operating Characteristics

(V_{CC} = +5.0V, T_A = +25°C, unless otherwise noted.)

Figure 2. Photodiode and Header Model

Figure 3. Functional Diagram

MAX3654
47MHz to 870MHz Analog CATV Transimpedance Amplifier

Typical Operating Characteristics (continued)

(VCC = +5.0V, TA = +25°C, unless otherwise noted.)

GAIN TILT DEVIATION vs. FREQUENCY
(REFERRED TO A LINE FROM 50MHz TO 870MHz)

DIFFERENTIAL S22
(NORMALIZED TO 75Ω)

INPUT REFERRED NOISE vs. FREQUENCY
(MAXIMUM GAIN, VGA = 0V)

OIP3 vs. CONTROL VOLTAGE

OIP2 vs. CONTROL VOLTAGE
Detailed Description

The MAX3654 is a broadband, high-linearity, low-noise transimpedance amplifier. The transimpedance (gain) can be adjusted between 43.5dBΩ and 62dBΩ using the voltage at an external control input (VAGC). When connected as shown in the Typical Application Circuit, optical input levels from -6dBm to +2dBm will produce a minimum output of 14dBmV/channel, and 4dB tilt compensation. Gain deviation over frequency from 47MHz to 870MHz is less than ±0.75dB.

Low-Noise Variable Gain Amplifier

The input stage is a low-noise analog transimpedance amplifier (TIA) connected differentially to the analog photodiode. Desired performance can be achieved with a photodiode having capacitance (CPD) up to 1pF.

VAGC and Hysteresis Control

The gain-control pin VAGC sets overall TIA gain implemented as three switchable gain stages, each with a continuously variable gain control, as shown in Figure 3. This produces a continuously variable gain ranging from 62dBΩ (at VAGC = 0.175V) to 43.5dBΩ at (VAGC=1.4V). A set of comparators examines the VAGC input to select a gain stage. As the voltage at VAGC crosses the two locations in the gain vs. VAGC curve, where the gain stage changes (350mV and 700mV), there will be small deviations in the output which may lead to a brief interruption of CATV signals. See the Typical Operating Characteristics for Gain vs. Control Voltage.

A hysteresis control input is provided to limit dithering when the optical level is close to a gain-switching point. The hysteresis level is controlled by the value of RHYST. Hysteresis is minimum (0.13dB) when this pin is open.

RF Output and Cable Tilt Compensation

With a typical photodiode, the gain at 870MHz is 4dB higher than at 47MHz. The overall frequency response of the TIA is within ±0.75dB of a straight line connecting the values at 47MHz and 870MHz.

Mute

In normal operation, the TTL MUTE pin is held high. When MUTE is low, the output signal is attenuated by more than 45dB.
Applications Information

Photodiode Parasitics
The MAX3654 TIA is designed to operate with a low-capacitance analog photodiode. Proper system design includes considerations of lead configuration, pad, and through-hole geometry, and PC board layer selection for connections to the IC. The TIA is designed to operate correctly when the total capacitance of the photodiode, package, leads and PC board is between 1.0pF and 2.5pF.

RF Output
The differential TIA RF output should be connected (AC-coupled) to a balun transformer for normal single-ended output.

AGC Operation
For AGC operation, the optical average power can be measured from the voltage drop across the lower bias resistor, using high impedance to isolate the photodiode as shown in the EV kit schematic. TIA gain is inversely proportional to the voltage present at VAGC from 0.175V to 1.4V. From 0 to 0.175V, the gain is constant and maximum. The nominal gain is given by:

\[
ZT(dB) = 62dB + 20 \times \log \left(\frac{175mV}{VAGC(mV)} \right)
\]

(0.175V ≤ VAGC ≤ 1.4V).

When connected as shown in the Typical Applications Circuit, the MAX3654 will maintain the electrical output constant (15dBmV/ch) for optical signals in the -6dBm to +2dBm range.

Evaluation Kit and PC Board Layout
The factory-assembled EV kit for the MAX3654 provides two versions: optical input and electrical input.

The optical input circuit includes photodiode bias circuitry, an op amp to adjust VAGC according to the DC photodiode current (for AGC operation), an output balun, and a 75Ω output connector. Through-hole pads are provided to attach the triplexer analog photodiode leads. Since photodiode capacitance and package lead inductance affect the amount of uptilt, in configurations where lead inductance is significantly lower than the value shown in Figure 2, the uptilt may be increased by providing discrete inductance on the PC board. When a CpD = 0.5pF (typ) photodiode is mounted with 5mm (nominal) leads into through-hole vias as in the EV kit configuration, a 4dB uptilt will normally be achieved. It is important to configure the layout with capacitance and inductance in the anode and cathode connection as symmetric as possible.

The electrical input circuit is normally configured with a 50Ω input for use with conventional test and measurement equipment. If desired, the MAX3654 input can also be terminated with 75Ω as shown in the EV kit data sheet. The 75Ω EV kit outputs should be connected to 50Ω test and measurement equipment using a minimum loss pad.

For more information, see the Maxim website:
MAX3654 EV Kit data sheet—
http://www.maxim-ic.com/Fiber.cfm
Minimum Loss Pad—
http://www.maxim-ic.com/appnotes.cfm/appnote_number/972

Pin Configuration

Chip Information

TRANSISTOR COUNT: 3376
PROCESS: SiGe Bipolar
SUBSTRATE: SOI
47MHz to 870MHz Analog CATV Transimpedance Amplifier

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.) For the latest package outline information, go to www.maxim-ic.com/packages.) (TQFN 4mm x 4mm x 0.8mm, Package Code: T1644.)

<table>
<thead>
<tr>
<th>PACKAGE OUTLINE</th>
<th>12x16, 20x20, 28x20, Thin QFN, 4x4x0.8mm</th>
</tr>
</thead>
</table>

Common Dimensions

<table>
<thead>
<tr>
<th>Dimensions</th>
<th>Width</th>
<th>Height</th>
<th>Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exposed Pad Variations

<table>
<thead>
<tr>
<th>Pad</th>
<th>Width</th>
<th>Height</th>
<th>Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.