

General Description

The MAX2209A is a wideband (800MHz to 2 GHz) RF power detector. It takes an RF signal from the directional coupler at the input, and outputs a DC voltage proportional to the RF peak voltage. The change in output voltage versus temperature is very repeatable from part to part and enables a lookup table based on nominal behavior, minimizing the effective detection error to less than $\pm 0.5 \mathrm{~dB}$ relative to room temperature.

The MAX2209A comes in a space-saving $2 \times 2,0.5 \mathrm{~mm}$ pitch UCSP ${ }^{\text {TM }}$.

Applications
Dual-Band WCDMA Handsets
High-Speed Downlink Packet Access (HSDPA) High-Speed Uplink Packet Access (HSUPA)

Features

- -25dBm to -5dBm Power Detection Range
- $\pm 0.5 \mathrm{~dB}$ Detection Error Due to Temperature
- +2.7V to +5V Single-Supply Operation
- Space-Saving 4-Bump, 1mm² UCSP Package
- Shutdown Control
- 140ns Step-Response Time

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	TOP MARK
MAX2209AEBS +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	4 UCSP	AGJ

+Denotes a lead(Pb)-free/RoHS-compliant package

RF Power Detector with Shutdown Control

ABSOLUTE MAXIMUM RATINGS

Junction-to-Ambient Thermal	
Resistance ($\theta \mathrm{JA}$) (Note 1)	$335{ }^{\circ} \mathrm{C} / \mathrm{W}$
Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
Storage Temperature Range......................... $65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$	
Junction Temperature .. $150^{\circ} \mathrm{C}$	
Bump Temperature (soldering, Note 2)	
Infrared (15s).	$+260^{\circ} \mathrm{C}$
Soldering Temperature (reflow)	$+240^{\circ} \mathrm{C}$

Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a 4-layer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.
Note 2: For detailed information on soldering, refer to Application Note 1891: Wafer-Level Packaging (WLP) and Its Applications.
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Caution! ESD SENSITVE dEVICE

DC ELECTRICAL CHARACTERISTICS

$\left(\mathrm{VCC}=2.7 \mathrm{~V}\right.$ to 5.0 V , no RF signal applied, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{VCC}=2.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 3)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Voltage		2.7		5.0	V
Supply Current			3.9	6	mA
Idle Output Voltage			35		mV
Output Current Source Capability	PIN $=-5 d B m$, Vout forced 100 mV lower than opencircuit output voltage	1000	2300		$\mu \mathrm{A}$
Output Current Sink Capability	PIN $=-25 \mathrm{dBm}$, Vout forced 10 mV higher than opencircuit output voltage	75	150		$\mu \mathrm{A}$
Shutdown Current	VSHDN $=0 \mathrm{~V}$		25	50	$\mu \mathrm{A}$
SHDN Logic-High	V_{IH}, including $2 \mathrm{k} \Omega$ resistor	1.2			V
SHDN Logic-Low	$\mathrm{V}_{\text {IL }}$, including $2 \mathrm{k} \Omega$ resistor			0.45	V
Turn-On Time	SHDN transitions to V_{IH}, Vout is within 90% of final value (Note 4)		1.5	2	$\mu \mathrm{s}$
RF Step-Response Time	RF transitions from $<-25 \mathrm{dBm}$ to -5 dBm , VOUT is within 90% of final value, $1 \mathrm{k} \Omega+10 \mathrm{pF}$ load (Note 4)		140	200	ns

RF Power Detector with Shutdown Control

AC ELECTRICAL CHARACTERISTICS

(50Ω system, $\mathrm{V}_{\mathrm{CC}}=2.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 3)

PARAMETER	CONDITIONS	MIN TYP	MAX	UNITS
RF Input Frequency		800	2000	MHz
RF Input Return Loss	800 MHz	16		dB
	2000 MHz	9		
Output Voltage, 836MHz	-5dBm input	0.88		V
	-25dBm input	0.06		
Output Voltage, 1950MHz	-5dBm input	0.72		V
	-25dBm input	0.06		
Residual Error after Room Temperature Calibration ($\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$) (Note 4)	-5dBm input		± 0.5	dB
	-25dBm input		± 1.5	

Note 3: Guaranteed by production test at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Guaranteed by design and characterization at $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ and $\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$. Note 4: Guaranteed by design and characterization. See the Typical Operating Characteristics.

Typical Operating Characteristics

($\mathrm{VCC}=2.8 \mathrm{~V}$. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

RF Power Detector with Shutdown Control

Typical Operating Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=2.8 \mathrm{~V}\right.$. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

SETTLING TIME FROM RF POWER
(ON/OFF RF = 836MHz)

RF RETURN LOSS
vs. FREQUENCY

RF Power Detector with Shutdown Control

Bump Configuration

TOP VIEW BUMP SIDE DOWN	ЛИノXIルV MAX2209A
	OUT $V_{C C}$ $A A 1$ $A 2$ GND REFIN／SDDN $B 1$ $B 2$
	UCSP

Bump Description

BUMP	NAME	FUNCTION
A1	OUT	Detector Output
A2	VCC	Power Supply．Bypass to GND with a capacitor as close as possible to the bump．
B1	GND	Ground Connection．Connect to PCB ground plane with as low inductance as possible．
B2	RFIN／SHDN	RF Input and Shutdown Control．AC－couple the RF input and DC couple the shutdown control through a $2 k \Omega$ resistor to this pin．

RF Power Detector with Shutdown Control

Detailed Description

The MAX2209A power detector is designed to operate from 800 MHz to 2.0 GHz . The device is ideal for wideband code-division multiple access (WCDMA), cdma2000®, and high-speed downlink/uplink packet access. The MAX2209A accepts an RF signal at the input, and outputs a temperature-independent voltage related to the input signal power. The output voltage expressed in dBV is proportional to the input power expressed in dBm. The device has a detection range from -25 dBm to 0 dBm .

Applications Information

The typical application circuit, as taken from the MAX2209A EV Kit, is shown in Figure 1. The IC can be shut down by forcing the RFIN/SHDN DC voltage low through a $2 \mathrm{k} \Omega$ resistor. The output of the detector goes to an ADC for further processing by the baseband system. Connect a series resistor and shunt capacitor to the MAX2209A output to reduce residual amplitude ripple. The series resistor should not be less than $1 \mathrm{k} \Omega$.

EV kit gerber files, schematic, BOM, and updates are available on the MAX2209A product page at Maxim's website (www.maxim-ic.com).

Layout

There are two areas that require attention: the GND pin and the supply bypassing. Connect the GND pin to the PCB ground with a GND via as close as possible, and bypass VCC to ground with a capacitor as close as possible to the part.

Figure 1. Typical Application Circuit from MAX2209A EV Kit

Chip Information
PROCESS: BIPOLAR

Package Information

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a "+", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
4 UCSP	$B 4+4$	$\underline{21-0007}$	-

RF Power Detector with Shutdown Control

Revision History	REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	$9 / 10$	Initial release	-	

