General Description

The MAX20014 is a high-efficiency three-output low-voltage DC-DC converter. OUT1 boosts the input supply up to 8.5V at up to 750mA, while two synchronous step-down converters operate from a 3.0V to 5.5V input voltage range and provide a 0.8V to 3.8V output voltage range at up to 3A. The boost converter achieves ±2% and the buck converters achieve ±1.5% output error over load, line, and temperature range.

The device features a 2.2MHz fixed-frequency pulse-width modulation (PWM) mode for better noise immunity and load transient response, and a pulse-frequency modulation mode (skip) for increased efficiency during light-load operation. The 2.2MHz frequency operation allows for the use of all-ceramic capacitors and minimizes external components footprint. The programmable spread-spectrum frequency modulation minimizes radiated electromagnetic emissions. Integrated low RDS(ON) switches improve efficiency at heavy loads and make the layout a much simpler task with respect to discrete solutions.

The device is offered with factory-preset output voltages or resistor-adjustable output voltages. Other features include soft-start, overcurrent, and overtemperature protections.

Benefits and Features

- **Multiple Functions for Small Size**
 - Synchronous 750mA Boost Converter
 - Fixed from 3.8V to 8.5V in 100mV Steps
 - Dual Synchronous Buck Converters Up to 3A
 - Factory-Configurable Output Voltages from 0.8V to 3.8V in 25mV Steps
 - Resistor Adjustable
 - 3.0V to 5.5V Operating Supply Voltage
 - 2.2MHz Operation
 - Undervoltage Threshold of 93% ±3%
 - Overvoltage Threshold of 107% ±3%
 - Individual RESET Outputs

- **High-Precision**
 - ±1.5% Output-Voltage Accuracy
 - Good Load Transient Performance for Buck Converters

- **Robust for the Automotive Environment**
 - Current Mode, Forced-PWM, and Skip Operation
 - Overtemperature and Short-Circuit Protection
 - 4mm x 4mm 24-Pin TQFN
 - -40°C to +125°C Automotive Temperature Range

Ordering Information/Selector Guide appears at end of data sheet.
MAX20014

2.2MHz Sync Boost and Dual Step-Down Converters

Absolute Maximum Ratings

PV2, PV3 to PGND ..-0.3V to +6V
PV to GND..-0.3V to +6V
REG1 to GND................................-0.3V to VOUT1 + 0.3V
EN1–EN3, SYNC to GND...............-0.3V to VPV + 0.3V
RESET1–RESET3, GND..................-0.3V to +6V
OUT1 to PGND1..........................-0.3V to +10V
OUT2 to PGND2........................-0.3V to VPV2 + 0.3V
OUT3 to PGND3........................-0.3V to VPV3 + 0.3V
LX1 to PGND1............................-0.3V to VOUT1 + 0.3V
LX2 to PGND2........................-0.3V to VPV2 + 0.3V
LX3 to PGND3............................-0.3V to VPV3 + 0.3V
GND to PGND...-0.3V to +0.3V

LX1 Continuous RMS Current...........2A
LX2, LX3 Continuous RMS Current........3A
Output Short-Circuit Duration...............Continuous
Continuous Power Dissipation (TA = +70°C)...........2222mW
Operating Temperature...............-40°C to +125°C
Junction Temperature...................+150°C
Storage Temperature Range..............-65°C to +150°C
Lead Temperature Range................+300°C

Continuous Power Dissipation (TA = +70°C):

TQFN-EP (derate 30.3 mW/°C > +70°C)..........

Electrical Characteristics

(VPV = VPV2 = VPV3 = 3.3V, EN1 = EN2 = EN3 = 3.3V. TA = TJ = -40°C to +125°C, unless otherwise noted. Typical values are at TA = +25°C under normal conditions, unless otherwise noted.) (Note 2)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage Range</td>
<td>VIN</td>
<td>Fully operational</td>
</tr>
<tr>
<td>Undervoltage Lockout (UVLO)</td>
<td>UVLOR</td>
<td>Rising</td>
</tr>
<tr>
<td></td>
<td>UVLOF</td>
<td>Falling</td>
</tr>
<tr>
<td>Shutdown Supply Current</td>
<td>IIN-SHDN</td>
<td>EN1–EN3 = low</td>
</tr>
<tr>
<td>Supply Current</td>
<td>IIN1</td>
<td>EN1 = high, IOUT1 = 0mA, skip, VOUT1 2% above regulation point</td>
</tr>
<tr>
<td></td>
<td>IIN2</td>
<td>EN2 = high, IOUT2 = 0mA, skip, VOUT2 2% above regulation point</td>
</tr>
<tr>
<td></td>
<td>IIN3</td>
<td>EN3 = high, IOUT3 = 0mA, skip, VOUT3 2% above regulation point</td>
</tr>
<tr>
<td>PWM Switching Frequency</td>
<td>fSW</td>
<td>Internally generated</td>
</tr>
<tr>
<td>Spread Spectrum</td>
<td>SS</td>
<td>Factory option enabled</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OUT1 SYNCHRONOUS DC-DC BOOST CONVERTER</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage Accuracy</td>
<td>VOUT1</td>
</tr>
<tr>
<td>pMOS On-Resistance</td>
<td>RHS1</td>
</tr>
<tr>
<td>nMOS On-Resistance</td>
<td>RLS1</td>
</tr>
<tr>
<td>nMOS Current-Limit Threshold</td>
<td>ILIM1</td>
</tr>
<tr>
<td>pMOS Turn-Off Threshold</td>
<td>IZX1</td>
</tr>
</tbody>
</table>

Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Package Thermal Characteristics (Note 1)

Junction-to-Ambient Thermal Resistance (θJA).............36°C/W
Junction-to-Case Thermal Resistance (θJC)..............3°C/W

Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.

www.maximintegrated.com

Maxim Integrated | 2
Electrical Characteristics (continued)

\(V_{PV} = V_{PV2} = V_{PV3} = 3.3V, \) \(EN1 = EN2 = EN3 = 3.3V, T_A = T_J = -40^\circ C \) to \(+125^\circ C, \) unless otherwise noted. Typical values are at \(T_A = +25^\circ C \) under normal conditions, unless otherwise noted. (Note 2)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>LX1 Leakage Current</td>
<td>(I_{LX1KG})</td>
<td>(V_{PV} = V_{PV2} = 6V, LX1 = PGND1) or (OUT1), (T_A = 25^\circ C)</td>
<td>-1</td>
<td>+0.1</td>
<td>+1</td>
<td>(\mu A)</td>
</tr>
<tr>
<td>Maximum Duty Cycle</td>
<td>(D_{MAX1})</td>
<td></td>
<td></td>
<td>75</td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>OUT1 Discharge Resistance</td>
<td>(R_{DIS1})</td>
<td>(V_{EN1} = 0V, V_{OUT1} = 1V)</td>
<td>200</td>
<td>440</td>
<td>700</td>
<td>(\Omega)</td>
</tr>
<tr>
<td>OUT1 Discharge Current</td>
<td>(I_{DIS1})</td>
<td>(V_{EN1} = 0V, V_{OUT1} =) regulation point</td>
<td>4</td>
<td>10</td>
<td>18</td>
<td>mA</td>
</tr>
<tr>
<td>Switching Phase</td>
<td>(PH_{LX1})</td>
<td>With respect to (LX3) rising edge</td>
<td></td>
<td>20</td>
<td></td>
<td>deg</td>
</tr>
<tr>
<td>REG1 to OUT1</td>
<td>(V_{REG1})</td>
<td>(V_{OUT1} > 4.5V)</td>
<td>-5.1</td>
<td>-4.5</td>
<td>-3.9</td>
<td>V</td>
</tr>
<tr>
<td>Skip Threshold</td>
<td>(SKIPI)</td>
<td>Percentage of (nMOS) current-limit threshold</td>
<td>5</td>
<td>15</td>
<td>30</td>
<td>%</td>
</tr>
<tr>
<td>Soft-Start Time</td>
<td>(t_{SS1})</td>
<td></td>
<td></td>
<td>1</td>
<td>9</td>
<td>ms</td>
</tr>
</tbody>
</table>

OUT2 SYNCHRONOUS STEP-DOWN CONVERTER

Voltage Accuracy	\(V_{OUT2} \)	\(I_{LOAD} = 0A \) to \(I_{MAX}, 3.0V \leq V_{PV} \leq 5.5V, \) PWM mode selected	-1.5	+1.5		%	
pMOS On-Resistance	\(R_{HS2} \)	\(V_{PV} = V_{PV2} = 3.3V, I_{LX2} = 0.2A \)	35	82	150	\(\Omega \)	
nMOS On-Resistance	\(R_{LS2} \)	\(V_{PV} = V_{PV2} = 3.3V, I_{LX2} = 0.2A \)	20	50	100	\(\Omega \)	
pMOS Current-Limit Threshold	\(I_{LIM2-1} \)	Factory option 1 (1A)	1.4		1.9	A	
	\(I_{LIM2-2} \)	Factory option 2 (2A)	2.8		3.8		
	\(I_{LIM2-3} \)	Factory option 3 (3A)	4.5		5.8		
	\(I_{LIM2-4} \)	Factory option 4 (3.6A)	5.1		6.5		
nMOS Zero-Crossing Threshold	\(I_{ZX2} \)			1	50	150	mA
Maximum Duty Cycle	\(D_{MAX2} \)			100		%	
Minimum On-Time	\(t_{MINTON2} \)			25	44	68	ns
LX2 Discharge Resistance	\(R_{DIS2} \)	\(V_{EN2} = 0V \) (connected to \(LX2 \))	20	40	80	\(\Omega \)	
Switching Phase	\(PH_{LX2} \)			180		deg	
Skip Threshold	\(SKIPI \)	Percentage of \(pMOS \) current-limit threshold	4	12	20	%	
Soft-Start Time	\(t_{SS2} \)			2	5		ms

OUT3 SYNCHRONOUS STEP-DOWN CONVERTER

Voltage Accuracy	\(V_{OUT3} \)	\(I_{LOAD} = 0A \) to \(I_{MAX}, 3.0V \leq V_{PV} \leq 5.5V, \) PWM mode selected	-1.5	+1.5		%	
pMOS On-Resistance	\(R_{HS3} \)	\(V_{PV} = V_{PV3} = 3.3V, I_{LX3} = 0.2A \)	35	82	150	\(\Omega \)	
nMOS On-Resistance	\(R_{LS3} \)	\(V_{PV} = V_{PV3} = 3.3V, I_{LX3} = 0.2A \)	20	50	100	\(\Omega \)	
pMOS Current-Limit Threshold	\(I_{LIM3-1} \)	Option 1 (1A)	1.4		1.9	A	
	\(I_{LIM3-2} \)	Option 2 (2A)	2.8		3.8		
	\(I_{LIM3-3} \)	Option 3 (3A)	4.5		5.8		
	\(I_{LIM3-4} \)	Factory option 4 (3.6A)	5.1		6.5		
nMOS Zero-Crossing Threshold	\(I_{ZX3} \)			1	50	150	mA
Electrical Characteristics (continued)

\(V_{PV} = V_{PV2} = V_{PV3} = 3.3V, EN1 = EN2 = EN3 = 3.3V. T_A = T_J = -40^\circ C \) to \(+125^\circ C \), unless otherwise noted. Typical values are at \(T_A = +25^\circ C \) under normal conditions, unless otherwise noted. \(\) (Note 2)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Duty Cycle</td>
<td>DC_{MAX3}</td>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td>%</td>
</tr>
<tr>
<td>Minimum On-Time</td>
<td>t_{MIN_T_ON3}</td>
<td></td>
<td>25</td>
<td>44</td>
<td>68</td>
<td>ns</td>
</tr>
<tr>
<td>LX3 Discharge Resistance</td>
<td>R_{DIS3}</td>
<td>(V_{EN3} = 0V) (connected to LX3)</td>
<td>20</td>
<td>40</td>
<td>80</td>
<td>Ω</td>
</tr>
<tr>
<td>Switching Phase</td>
<td>PH_{LX3}</td>
<td>With respect to LX3 rising edge</td>
<td>0</td>
<td></td>
<td></td>
<td>deg</td>
</tr>
<tr>
<td>Skip Threshold</td>
<td>SKIP_3</td>
<td>Percentage of pMOS current-limit treshold</td>
<td>4</td>
<td>12</td>
<td>20</td>
<td>%</td>
</tr>
<tr>
<td>Soft-Start Time</td>
<td>t_{SS3}</td>
<td></td>
<td></td>
<td>2.5</td>
<td></td>
<td>ms</td>
</tr>
</tbody>
</table>

THERMAL OVERLOAD
- Thermal-Shutdown Temperature \(T_{SHDN} \): \(T_J \) rising, 165 \(^\circ C\)
- Hysteresis \(T_{HYST} \): 15 \(^\circ C\)

OUT1–OUT3 OPEN-DRAIN RESET OUTPUTS (RESET1–RESET3)
- Overvoltage Threshold \(OV \): Rising, % of nominal output, 104 %
- Undervoltage Threshold \(UV \): Falling, % of nominal output, 90 %
- Active Hold Period \(I_{HOLD} \): 7.4 ms
- Delay Filter \(t_{PVDEL} \): 10\% below/above threshold, 10 μs
- RESET1–RESET3 High-Leakage Current \(I_{PVOL_LIK} \): -0.5 to +0.5 μA
- Output Low Level \(V_{PVOL} \): 3.0V ≤ \(V_{PV} \) ≤ 5.5V, sinking 2mA, 0.2 V

EN1–EN3 AND SYNC INPUTS
- Input High Level \(V_{IH} \): 1.5 V
- Input Low Level \(V_{IL} \): 0.5 V
- Input Hysteresis \(V_{ENHYST} \): 0.1 V
- EN1–EN3 Input Pulldown Current \(I_{EN_PD} \): \(V_{PV} = 5.0V, T_A = +25^\circ C \), 0.2 μA
- EN1–EN3 Leakage Current \(I_{ENLK} \): 0 ≤ \(V_{PV} \) ≤ 5.5V, \(T_A = +25^\circ C \), -1 μA
- SYNC Input Pulldown \(R_{SYNCPD} \): 50 to 100 kΩ
- SYNC Input Frequency Range \(f_{SYNC} \): 1.8 to 2.6 MHz

SYNC OUTPUT
- Output Low \(V_{OL} \): \(V_{PV} = 3.3V, I_{SINK} = 2mA \), 0.4 V
- Output High \(V_{OH} \): \(V_{PV} = 3.3V, I_{SOURCE} = 2mA \), 2.7 V

Note 2: All units are 100% production tested at +25°C. All temperature limits are guaranteed by design.
Typical Operating Characteristics

OUT1 EFFICIENCY

OUT2/3 EFFICIENCY

OUT2/3 LOAD REGULATION

OUT1 LOAD TRANSIENT (PWM MODE)

OUT2/3 LOAD TRANSIENT (PWM MODE)

www.maximintegrated.com
Pin Configurations

![MAX20014 Pin Diagram](top_view.png)

Pin Description

<table>
<thead>
<tr>
<th>PIN</th>
<th>NAME</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RESET3</td>
<td>Open-Drain RESET Output for OUT3. To obtain a logic signal, pull up RESET3 with an external resistor.</td>
</tr>
<tr>
<td>2</td>
<td>RESET2</td>
<td>Open-Drain RESET Output for OUT2. To obtain a logic signal, pull up RESET2 with an external resistor.</td>
</tr>
<tr>
<td>3</td>
<td>RESET1</td>
<td>Open-Drain RESET Output for OUT1. To obtain a logic signal, pull up RESET1 with an external resistor.</td>
</tr>
<tr>
<td>4</td>
<td>EN1</td>
<td>Active-High Enable Input for OUT1. Drive EN1 high for normal operation.</td>
</tr>
<tr>
<td>5</td>
<td>EN2</td>
<td>Active-High Enable Input for OUT2. Drive EN2 high for normal operation.</td>
</tr>
<tr>
<td>6</td>
<td>EN3</td>
<td>Active-High Enable Input for OUT3. Drive EN3 high for normal operation.</td>
</tr>
<tr>
<td>7</td>
<td>OUT2</td>
<td>OUT2 Voltage Sense Input/Feedback Pin</td>
</tr>
<tr>
<td>8</td>
<td>PGND2</td>
<td>Power Ground for OUT2. Connect all PGND pins together.</td>
</tr>
<tr>
<td>9</td>
<td>LX2</td>
<td>Inductor Connection. Connect LX2 to the switched side of the inductor.</td>
</tr>
<tr>
<td>10</td>
<td>PV2</td>
<td>Power Input Supply for OUT2. Connect a 4.7µF ceramic capacitor from PV2 to PGND2.</td>
</tr>
<tr>
<td>11</td>
<td>SYNC</td>
<td>SYNC I/O. When configured as an input, connect SYNC to GND or leave unconnected to enable skip-mode operation under light loads. Connect SYNC to PV or an external clock to enable fixed-frequency forced-PWM-mode operation. When configured as an output (factory-configured), connect SYNC to other devices.</td>
</tr>
<tr>
<td>12</td>
<td>GND</td>
<td>Unused. Connect to ground.</td>
</tr>
<tr>
<td>13</td>
<td>PGND1</td>
<td>Power Ground. Connect all PGND pins together.</td>
</tr>
<tr>
<td>14</td>
<td>LX1</td>
<td>Inductor Connection. Connect LX1 to the switched side of the inductor.</td>
</tr>
<tr>
<td>15</td>
<td>OUT1</td>
<td>OUT1 Voltage Output</td>
</tr>
<tr>
<td>16</td>
<td>REG1</td>
<td>Floating Supply for OUT1. Connect a 0.33µF ceramic capacitor from REG1 to OUT1.</td>
</tr>
<tr>
<td>17</td>
<td>GND</td>
<td>Analog Ground</td>
</tr>
<tr>
<td>18</td>
<td>PV</td>
<td>Analog Input Supply. Connect a 1µF or larger ceramic capacitor from PV to GND with a 10Ω resistor in series to the supply voltage.</td>
</tr>
</tbody>
</table>
The MAX20014 is a high-efficiency three-output low-voltage DC-DC converter. OUT1 is a 750mA (typ) synchronous DC-DC boost converter that boosts the 3.0V to 5.5V input supply to a factory-set fixed-output voltage between 3.8V and 8.5V in 100mV steps. The boost converter has true shutdown so the output voltage is 0V when off. The two synchronous step-down converters (OUT2, OUT3) operate from a 3.0V to 5.5V input voltage and provide a 0.8V to 3.80V output voltage at up to 3A. OUT2 and OUT3 can be factory set to a fixed voltage or resistor adjustable. The boost converter achieves ±2% and the buck converters achieve ±1.5% output error over load, line, and temperature range.

The device features a 2.2MHz fixed-frequency PWM mode for better noise immunity and load-transient response, and a pulse-frequency modulation mode (skip) for increased efficiency during light-load operation. The 2.2MHz frequency operation allows for the use of all-ceramic capacitors and minimizes external components. The programmable spread-spectrum frequency modulation minimizes radiated electromagnetic emissions. The spread modulation can be factory set to pseudorandom. Integrated low $R_{DS(ON)}$ switches improve efficiency at heavy loads and make the layout a much simpler task with respect to discrete solutions.

The device contains high-accuracy overvoltage/under-voltage thresholds for each output that is mapped to the RESET1–RESET3 pins. There are diagnostics on RESET1–RESET3 and OUT1–OUT3 to guarantee high reliability and fail-safe operation.

In light-load applications, a logic input (SYNC) allows the devices to operate either in skip mode for reduced current consumption, or fixed-frequency, forced-PWM mode to eliminate frequency variation, and help minimize EMI. Protection features include cycle-by-cycle current limit, and thermal shutdown with automatic recovery.

Enable Inputs (EN1–EN3)
The enable control inputs (EN1–EN3) activate the device channel from their low-power shutdown state. EN1–EN3 have an input threshold of 1.0V (typ) with hysteresis of 100mV (typ). EN1–EN3 are fully independent with no timing restrictions between each other. When an enable input goes high, the associated output voltage ramps up with the programmed soft-start time.

Reset Outputs (RESET1–RESET3)
The device features individual open-drain reset outputs for each output that asserts low when the corresponding output voltage is outside of the UV/OV window. RESET1–RESET3 remain asserted for a fixed timeout period after the output rises up to its regulated voltage. The fixed timeout period is selectable between 0.8ms, 3.7ms, 7.4ms (default), or 14.9ms. See the Ordering Information/Selector Guide table. To obtain a logic signal, place a pullup resistor between the RESET1–RESET3 pins to the system I/O voltage.

Feedback Pins (OUT1–OUT3)
The output voltage is fed back to the corresponding OUT_ feedback pin to close the regulation loop. If this connection is open, the output turns off to prevent open-loop operation that would normally result in the output being driven to the input supply voltage. For a fixed-output voltage, connect OUT_ directly to the output. For an adjustable-output voltage, connect a resistor-divider to the output and connect OUT_ to the midpoint. The boost converter output is not resistor adjustable.
Internal Block Diagram
Internal Oscillator
The device has a spread-spectrum oscillator that varies the internal operating frequency up by ±3% relative to the internally generated operating frequency of 2.2MHz (typ). This function does not apply to externally applied oscillation frequency. The spread frequency generated is pseudorandom, with a repeat rate well below the audio band.

Synchronization (SYNC)
SYNC is factory-programmable I/O. See the Ordering Information/Selector Guide table for available options. When configured as an input, a logic-high on SYNC enables fixed-frequency, forced-PWM mode. Apply an external clock on the SYNC input to synchronize the internal oscillator to an external clock. The SYNC input accepts signal frequencies in the range of 1.8MHz < \(f_{SYNC} \) < 2.6MHz. When the pin is open or logic-low, the SYNC input enables the device to enter a low-power skip mode under light-load conditions. When configured as an output, SYNC outputs the internally generated 2.2MHz clock that switches from PV to GND. All converters operate in forced-PWM mode when SYNC is configured as an output.

Soft-Start
The device includes a fixed soft-start of 1.9ms for OUT1 and 2.5ms for OUT2/OUT3. Soft-start time limits startup inrush current by forcing the output voltage to ramp up towards its regulation point.

OUT3 Load-Switch Option
OUT3 of the device can be factory trimmed to operate as a load switch. In this configuration, LX3 becomes the output and OUT3 must be connected to GND. When EN3 goes high, the high-side pMOS current ramps from 0 to \(I_{MAX} \) in 500µs (typ) to limit the inrush current. The pMOS switch is also protected from short circuit. When a short circuit is detected, the pMOS turns off and reinitiates a soft-start sequence. For proper operation, the peak current through the pMOS switch must be kept below 4.2A during soft-start. This limits the maximum output capacitor value depending on the output voltage and load conditions. It is recommended that the output capacitor does not exceed 47µF.

When configured as a load switch, the \(\text{RESET3} \) output indicates when the pMOS switch is fully closed and not the actual voltage on the output. The normal hold time still applies.

Current Limit/Short-Circuit Protection
The device features current limit that protects the device against short-circuit and overload conditions at the output. In the event of a short-circuit or overload condition, the high-side MOSFET remains on until the inductor current reaches the high-side MOSFET’s current-limit threshold. The converter then turns on the low-side MOSFET to allow the inductor current to ramp down. Once the inductor current crosses below the low-side MOSFET current-limit threshold, the converter turns on the high-side MOSFET again. This cycle repeats until the short or overload condition is removed.

PWM and Skip Modes
The device features a SYNC input that puts the converter either in skip mode for forced-PWM mode of operation. See the Pin Description table for more details. In PWM mode, the converter switches at a constant frequency with variable on-time. In skip mode of operation, the converter’s switching frequency is load dependent until the output load reaches a certain threshold. At higher load current, the switching frequency does not change and the operating mode is similar to the PWM mode. Skip mode helps improve efficiency in light-load applications by allowing the converter to turn on the high-side switch only when the output voltage falls below a set threshold. As such, the converter does not switch MOSFETs on and off as often as is the case in PWM mode. Consequently, the gate charge and switching losses are much lower in skip mode.

Overtemperature Protection
Thermal-overload protection limits the total power dissipation in the MAX20014. When the junction temperature exceeds +165°C (typ), an internal thermal sensor shuts down the internal bias regulator and the step-down controller, allowing the device to cool. The thermal sensor turns on the device again after the junction temperature cools by 15°C.
Applications Information

Input Capacitors
The input filter capacitor reduces peak currents drawn from the power source and reduces noise and voltage ripple on the input caused by the circuit's switching. A 4.7 µF X7R ceramic capacitor is recommended for the PV2 and PV3 pins, as well as the supply side pin of the boost inductor. A 1.0 µF X7R ceramic capacitor is recommended for the PV pin, with a 10 Ω resistor in series to the input supply.

Boost Inductor Selection and Output Current
Proper choice of inductor for the boost converter is based on ripple current and slope compensation. Ripple current (I_{PK-PK}) is usually specified as a percentage of the average input current. 33% peak-to-peak ripple provides a reasonable balance between inductor size, DCR, and core losses.

The peak boost input current limit is 1.6 A (min), so the average current as a function of I_{PK-PK} is shown below.

Equation 1:

$$I_{IN} = \frac{1.6}{1 + I_{PK-PK}/2}$$

For 33% ripple, this equates to 1.37 A for I_{IN} and 0.45 A ripple current (denoted I_{Δ}, which has a unit of A, as opposed to I_{PK-PK}, which is a percentage). With the maximum average current I_{IN} known, the maximum output current for a given duty cycle (D) is shown below.

Equation 2:

$$I_{OUT-MAX} = (1-D) \times I_{IN}$$

where (see Equation 3):

Equation 3:

$$D = 1 - \eta \times V_{IN}/V_{OUT}$$

If η (efficiency) is not known, it must be measured or estimated. A good efficiency estimate is 0.9 (90%) for V_{OUT}/V_{IN} ratios of 1.5 or less, and 0.8 for V_{OUT}/V_{IN} ratios near 2.5.

The approximate minimum inductance necessary to achieve a given ripple current I_{Δ} is shown below.

Equation 4:

$$L_{MIN1} = (V_{IN} \times D)/(f_{SW} \times I_{\Delta})$$

The second factor in inductor selection is slope compensation. The inductor current down-slope (m_2) must be less than twice the internal slope compensation down-ramp (m_1) to dampen oscillations in the inductor current waveform. Perfect deadbeat control occurs when the two downslopes are equal. The inductor current downslope is given by the formula below.

Equation 5:

$$m_2 = (V_{OUT} - V_{IN})/L$$

The internal slope compensation ramp for the boost channel is set at 0.630 V/µs, and the R_{CS} for the boost channel is fixed at 0.330 Ω. This provides a compensation ramp downslope of:

Equation 6:

$$m_1 = 0.630/R_{CS}$$

Setting the inequality, adding in a margin factor of 1.3 for device and component variation, and rearranging for inductance gives the following.

Equation 7:

$$L_{MIN2} \geq 1.3 \cdot R_{CS} \times (V_{OUT} - V_{IN})/(0.630 \times 2)$$

This gives the minimum inductance necessary for satisfying slope compensation (half inductor downslope). The minimum inductance acceptable for use is the greater of the two calculated minimum values.

Equation 8:

$$L_{MIN} = \max(L_{MIN1}, L_{MIN2})$$

The maximum recommended inductance is twice the minimum value.

Equation 9:

$$L_{MIN} < L_{NOM} < 2 \times L_{MIN}$$

Soft-saturation type inductors are recommended, as they maintain a measure of effective inductance even when driven past their saturation points during fault conditions. If a ferrite-based inductor is used, then the saturation current must be higher than the maximum current limit in order to help protect the part during continuous output short-circuit events.
Buck Inductor Selection

Three key inductor parameters must be specified for operation with the MAX20014: inductance value \(L \), peak inductor current \(I_{\text{PEAK}} \), and inductor saturation current \(I_{\text{SAT}} \). The minimum required inductance is a function of operating frequency, input-to-output voltage differential, and the maximum output current capability of the output. A lower inductor value minimizes size and cost, improves large-signal and transient response, but reduces efficiency due to higher peak currents and higher peak-to-peak output-voltage ripple for the same output capacitor. On the other hand, higher inductance increases efficiency by reducing the ripple current. Resistive losses due to extra wire turns can exceed the benefit gained from lower ripple current levels especially when the inductance is increased without also allowing for larger inductor dimensions. The MAX20014 is designed for \(\Delta I_{\text{P-P}} \) equal to \(\sim 30\% \) of the full load current. Use the following equation to calculate the inductance.

Equation 10:

\[
L_{\text{MIN}1} = \left(\frac{V_{\text{IN}} - V_{\text{OUT}}}{V_{\text{IN}} \times f_{\text{SW}} \times I_{\text{MAX}} \times 30\%} \times V_{\text{OUT}} \right)
\]

\(V_{\text{IN}} \) and \(V_{\text{OUT}} \) are typical values so that efficiency is optimum for typical conditions. The switching frequency \(f_{\text{SW}} \) is 2.2MHz. The maximum output capability \(I_{\text{MAX}} \) of 1A, 2A, or 3A based on the specific part number of the device. See the Boost Output Capacitor section to verify that the worst-case output ripple is acceptable. The inductor saturation current is also important to avoid runaway current during continuous output short circuit.

The next equation ensures that the inductor current downslope is less than the internal slope compensation. For this to be the case, the following equation needs to be satisfied.

Equation 11:

\[
-m \geq \frac{m2}{2}
\]

where:

\(m2 \)	The inductor current downslope. \(\frac{V_{\text{OUT}} \times RCS}{L} \)
\(-m\)	Slope compensation. \begin{cases} 0.940 \frac{V}{\mu s} & \text{for } V_{\text{OUT}} > 3.2V \text{ fixed output.} \\ 0.535 \frac{V}{\mu s} & \text{for } V_{\text{OUT}} \leq 3.2V \text{ fixed output or adjustable output version.} \end{cases}
RCS	\begin{cases} 0.378 \Omega \text{ for 1A channel} \\ 0.263 \Omega \text{ for 2A channel} \\ 0.176 \Omega \text{ for 3A channel} \end{cases}

Solving for \(L \) and adding a 1.3 multiplier to account for tolerances in the system, is shown below.

Equation 12:

\[
L_{\text{MIN}2} = \frac{V_{\text{OUT}} - RCS}{2 \times m} \times 1.3
\]

To satisfy both \(L_{\text{MIN}1} \) and \(L_{\text{MIN}2} \), \(L_{\text{MIN}} \) must be set to the larger of the two.

Equation 13:

\[
L_{\text{MIN}} = \text{Max} \left(L_{\text{MIN}1}, L_{\text{MIN}2} \right)
\]

The maximum inductor value recommended is 2 times the chosen value from the above formula.

Equation 14:

\[
L_{\text{MAX}} = 2 \times L_{\text{MIN}}
\]

Select a nominal inductor value based on the following formula. For optimal performance select the first standard inductor value greater than \(L_{\text{MIN}} \).

Equation 15:

\[
L_{\text{MIN}} < L_{\text{NOM}} < L_{\text{MAX}}
\]
Boost Output Capacitor

The MAX20014 is designed to be stable with low-ESR ceramic capacitors. Other capacitor types are not recommended as the ESR zero can affect stability of the device. The output capacitor calculations below are guidelines based on nominal conditions. The phase margin must be measured on the final circuit to verify proper stability is achieved.

Equation 16:

\[
C_{OUT_MIN} = \frac{50 \times A \times \mu s}{V_{OUT}} \\
C_{OUT_NOM} = \frac{100 \times A \times \mu s}{V_{OUT}}
\]

Buck Output Capacitors

The MAX20014 is designed to be stable with low ESR ceramic capacitors. Other capacitor types are not recommended as the ESR zero can affect stability of the device. The output capacitor calculations below are guidelines based on nominal conditions. The phase margin must be measured on the final circuit to verify that proper stability is achieved.

Equation 17:

\[
C_{OUT23_MIN} = 10.5 \mu s \times \frac{I_{MAX}}{V_{OUT}} \\
C_{OUT23_NOM} = 27.5 \mu s \times \frac{I_{MAX}}{V_{OUT}}
\]

Adjustable Output-Voltage Option

The MAX20014 adjustable output-voltage version allows the customer to set the buck outputs to any voltage between 0.8V and approximately PV - 0.5V (see the Ordering Information/Selector Guide). The actual maximum output-voltage setting is limited by the specific application conditions and components. Connect a resistive divider from the output capacitor (V_{OUT}) to OUT_ to GND to set the output voltage (Figure 1). Select R_2 (OUT_ to GND resistor) ≤ 100kΩ. Calculate R_1 (V_{OUT} to OUT_ resistor) with the equation below.

Equation 18:

\[
R_1 = R_2 \left(\frac{V_{OUT}}{V_{FB}} \right) - 1
\]

where V_{FB} = 800mV (see the Electrical Characteristics).

The external feedback resistive divider must be frequency compensated for proper operation. Place a capacitor across R_1 in the resistive-divider network. Use Equation 20 to determine the value of the capacitor.

Equation 19:

\[
C_1 = 50 \frac{R_2}{R_1} \mu F
\]

with C_{OUT23_MIN} defining the minimum fully derated output capacitance required for a stable output, and C_{OUT23_NOM} defining the nominal output capacitance for maximum phase margin. I_{MAX} is the maximum DC current capability of the associated output, as defined in the Ordering Information/Selector Guide table. V_{OUT} is the output voltage for the associated channel.
PCB Layout Guidelines

For each converter, place the capacitor with the highest current ripple closest to the IC. For a buck converter, this is the input capacitor; for the boost converter, it is the output capacitor. Route the LX trace out from the IC underneath that capacitor (use a larger-package capacitor, such as 3.2mm x 1.6mm). Lastly, place the other capacitors close by with their ground pins very close to both the IC’s ground pins and the other capacitor’s ground pins. This configuration results in a closely-routed DC/DC converter that helps maintain performance and reduces EMI.

The layer directly below the IC and power components should be a continuous ground plane. Use multiple vias to provide good connections between that plane and component ground pins/pads. Split grounding should not be used.

The exposed pad (EP) of the IC is attached to the die with epoxy, providing a good way to dissipate thermal energy from the die. Connect the EP to all available ground planes below it using a grid of small vias in the EP land (3x3 grid of 0.3mm diameter vias is recommended).

Ordering Information/Selector Guide

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>TEMPERATURE RANGE</th>
<th>PIN-PACKAGE</th>
<th>V(_{OUT1}) (V)</th>
<th>V(_{OUT2}) (V)</th>
<th>I(_{OUT2}) (A)</th>
<th>V(_{OUT3}) (V)</th>
<th>I(_{OUT3}) (A)</th>
<th>t(_{HOLD}) (ms)</th>
<th>SS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX20014ATGA/V+</td>
<td>-40°C to +125°C</td>
<td>24 TQFN-EP*</td>
<td>5.0</td>
<td>ADJ</td>
<td>3</td>
<td>ADJ</td>
<td>3</td>
<td>7.4</td>
<td>Off</td>
</tr>
<tr>
<td>MAX20014ATGB/V++</td>
<td>-40°C to +125°C</td>
<td>24 TQFN-EP*</td>
<td>6.5</td>
<td>ADJ</td>
<td>3</td>
<td>ADJ</td>
<td>3</td>
<td>7.4</td>
<td>Off</td>
</tr>
<tr>
<td>MAX20014ATGC/V++</td>
<td>-40°C to +125°C</td>
<td>24 TQFN-EP*</td>
<td>5.0</td>
<td>1.2</td>
<td>3</td>
<td>1.8</td>
<td>3</td>
<td>7.4</td>
<td>Off</td>
</tr>
<tr>
<td>MAX20014ATGD/V++</td>
<td>-40°C to +125°C</td>
<td>24 TQFN-EP*</td>
<td>7.5</td>
<td>ADJ</td>
<td>2</td>
<td>ADJ</td>
<td>1</td>
<td>7.4</td>
<td>On</td>
</tr>
<tr>
<td>MAX20014ATGE/V++</td>
<td>-40°C to +125°C</td>
<td>24 TQFN-EP*</td>
<td>5.0</td>
<td>1.4</td>
<td>3</td>
<td>1.5</td>
<td>3</td>
<td>7.4</td>
<td>On</td>
</tr>
<tr>
<td>MAX20014ATGF/V+</td>
<td>-40°C to +125°C</td>
<td>24 TQFN-EP*</td>
<td>5.0</td>
<td>ADJ</td>
<td>3</td>
<td>ADJ</td>
<td>3</td>
<td>7.4</td>
<td>On</td>
</tr>
</tbody>
</table>

For variants with different options, contact factory.

/\(V\) denotes an automotive qualified part.

*Denotes a lead(Pb)-free/RoHS-compliant package.

*EP = Exposed pad.

**Future product—contact factory for availability.

Package Information

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”, “#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

<table>
<thead>
<tr>
<th>PACKAGE TYPE</th>
<th>PACKAGE CODE</th>
<th>OUTLINE NO.</th>
<th>LAND PATTERN NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 TQFN-EP*</td>
<td>T2444+4C</td>
<td>21-0139</td>
<td>90-0022</td>
</tr>
</tbody>
</table>
Revision History

<table>
<thead>
<tr>
<th>REVISION NUMBER</th>
<th>REVISION DATE</th>
<th>DESCRIPTION</th>
<th>PAGES CHANGED</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>11/16</td>
<td>Initial release</td>
<td>——</td>
</tr>
<tr>
<td>1</td>
<td>5/18</td>
<td>Various updates</td>
<td>1–12</td>
</tr>
<tr>
<td>2</td>
<td>12/18</td>
<td>Added MAX20014ATGF/V+ to Ordering Information/Selector Guide table</td>
<td>13</td>
</tr>
<tr>
<td>3</td>
<td>3/19</td>
<td>Updated Ordering Information/Selector Guide</td>
<td>13</td>
</tr>
</tbody>
</table>

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.