General Description
The MAX1822 high-side supply, using a regulated charge pump, generates a regulated output voltage 11V greater than the input supply voltage to power high-side switching and control circuits. The MAX1822 allows low-resistance N-channel MOSFETs (FETs) to be used in circuits that normally require costly, less efficient P-channel FETs and PNP transistors. The high-side output also eliminates the need for logic FETs in +5V and other low-voltage switching circuits.

A +3.5V to +16.5V input supply range and a typical quiescent current of only 150µA make the MAX1822 ideal for a wide range of line- and battery-powered switching and control applications where efficiency is crucial. Also provided is a logic-level power-ready output (PR) to indicate when the high-side voltage reaches the proper level.

The MAX1822 comes in an 8-pin SO package and requires three inexpensive external capacitors. The MAX1822 is a pin-for-pin replacement to the MAX622.

Features
- +3.5V to +16.5V Operating Supply Voltage Range
- Output Voltage Regulated to VCC + 11V (typ)
- 150µA (typ) Quiescent Current
- Power-Ready Output

Applications
- High-Side Power Control with N-Channel FETs
- Low-Dropout Voltage Regulators
- Power Switching from Low Supply Voltages
- H-Switches
- Stepper Motor Drivers
- Battery-Load Management
- Portable Computers

Typical Operating Circuit
![Typical Operating Circuit Diagram]

Pin Configuration
![Pin Configuration Diagram]

Ordering Information
<table>
<thead>
<tr>
<th>PART</th>
<th>TEMP. RANGE</th>
<th>PIN-PACKAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX1822ESA</td>
<td>-40°C to +85°C</td>
<td>8 SO</td>
</tr>
</tbody>
</table>
High-Side Power Supply

ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td>VCC</td>
<td></td>
<td>3.5</td>
<td>16.5</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>High-Side Voltage (Note 1)</td>
<td>VOUT</td>
<td>IOUT = 0, VCC = 3.5V, C1 = C2 = 0.047µF, C3 = 1µF</td>
<td>11.5</td>
<td>12.5</td>
<td>16.5</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IOUT = 0, VCC = 4.5V, C1 = C2 = 0.047µF, C3 = 1µF</td>
<td>14.5</td>
<td>15.5</td>
<td>17.5</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IOUT = 0, VCC = 16.5V, C1 = C2 = 0.01µF, C3 = 1µF (Note 2)</td>
<td>26.5</td>
<td>27.5</td>
<td>29.5</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IOUT = 500µA, VCC = 3.5V, C1 = C2 = 0.047µF, C3 = 1µF</td>
<td>8.5</td>
<td>10.5</td>
<td>16.5</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IOUT = 250µA, VCC = 5V, C1 = C2 = 0.047µF, C3 = 1µF</td>
<td>15</td>
<td>18</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IOUT = 500µA, VCC = 16.5V, C1 = C2 = 0.01µF, C3 = 1µF (Note 2)</td>
<td>26.5</td>
<td>29.5</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Power-Ready Threshold</td>
<td>PRT</td>
<td>IOUT = 0 (Note 3)</td>
<td>12</td>
<td>13.5</td>
<td>14.5</td>
<td>V</td>
</tr>
<tr>
<td>Power-Ready Output High</td>
<td>PROH</td>
<td>ISOURCE = 100µA</td>
<td>3.8</td>
<td>4.3</td>
<td>5</td>
<td>V</td>
</tr>
<tr>
<td>Power-Ready Output Low</td>
<td>PROL</td>
<td>ISINK = 1mA</td>
<td></td>
<td></td>
<td>0.4</td>
<td>V</td>
</tr>
<tr>
<td>Output Voltage Ripple</td>
<td>VR</td>
<td>C1 = C2 = 0.01µF, C3 = 10µF, IOUT = 1mA, VCC = 16.5V</td>
<td>50</td>
<td></td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>Switching Frequency</td>
<td>FO</td>
<td></td>
<td>90</td>
<td></td>
<td></td>
<td>kHz</td>
</tr>
<tr>
<td>Quiescent Supply Current</td>
<td>IQ</td>
<td>IOUT = 0, VCC = 5V, C1 = C2 = 0.047µF, C3 = 1µF, TA = +25°C</td>
<td>150</td>
<td>500</td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IOUT = 0, VCC = 16.5V, C1 = C2 = 0.047µF, C3 = 1µF, TA = +25°C</td>
<td>150</td>
<td>350</td>
<td></td>
<td>µA</td>
</tr>
</tbody>
</table>

Note 1: High-side voltage measured with respect to ground.

Note 2: For VCC > +13V on the MAX1822, use C1 = C2 = 0.01µF.

Note 3: Power-Ready Threshold is the voltage with respect to ground at VOUT when PR switches high (PR = VCC).
High-Side Power Supply

Typical Operating Characteristics

MAX1822

MAX1822

SUPPLY CURRENT vs. C3 CAPACITOR VALUE

- **VCC = +5V, IOUT = 0**
- **TA = +25°C**
- **C1 = C2 = C* = 0.01 µF**
- **C1 = C2 = 0.1 µF**
- **C1 = C2 = 0.033 µF**
- **C1 = C2 = 0.047 µF**
- **C1 = C2 = 0.022 µF**

MAX1822

SUPPLY CURRENT vs. SUPPLY VOLTAGE

- **C1 = C2 = 0.01 µF**
- **VCC = +5V**
- **C3 = 1 µF**
- **IOUT = 0**
- **TA = +25°C**
- **C1 = C2 = 0.47 µF**

MAX1822

OUTPUT VOLTAGE vs. OUTPUT CURRENT

- **VCC = +5V**
- **C3 = 10 µF**
- **TA = +25°C**
- **C1 = C2 = 0.01 µF**
- **C1 = C2 = 0.033 µF**
- **C1 = C2 = 0.047 µF**

MAX1822

MAXIMUM OUTPUT CURRENT vs. C1 = C2 CAPACITOR VALUE

- **VCC = +12V**
- **C3 = 10 µF**
- **TA = +25°C**
- **IOUT = 0**

NOTE: MAXIMUM IOUT IS THE LOAD CURRENT AT THE POINT WHERE VOUT BEGINS TO LOSE REGULATION.
High-Side Power Supply

Typical Operating Characteristics (continued)

Pin Description

<table>
<thead>
<tr>
<th>PIN</th>
<th>NAME</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C1+</td>
<td>Positive terminal to primary charge-pump capacitor</td>
</tr>
<tr>
<td>2</td>
<td>C2-</td>
<td>Negative terminal to secondary charge-pump capacitor</td>
</tr>
<tr>
<td>3</td>
<td>PR</td>
<td>Power-Ready Output. High when V_{OUT} is $\geq V_{CC} + 8.5,\text{V}$ with respect to GND.</td>
</tr>
<tr>
<td>4</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>5</td>
<td>V_{OUT}</td>
<td>High-Side Voltage Out</td>
</tr>
<tr>
<td>6</td>
<td>C2+</td>
<td>Positive terminal to secondary charge-pump capacitor</td>
</tr>
<tr>
<td>7</td>
<td>C1-</td>
<td>Negative terminal to primary charge-pump capacitor</td>
</tr>
<tr>
<td>8</td>
<td>V_{CC}</td>
<td>Input Supply</td>
</tr>
</tbody>
</table>
Detailed Description

Charge-Pump Operation

The MAX1822 is a multistage charge-pump power supply. Although the charge pump is capable of multiplying \(V_{CC} \) up to four times, the output is regulated to \(V_{CC} + 11V \) by an internal feedback circuit for inputs above 4V. The charge pump typically operates at 90kHz, but regulates by pulse skipping. When \(V_{OUT} \) exceeds \(V_{CC} + 11V \), the oscillator shuts off. As \(V_{OUT} \) dips below \(V_{CC} + 11V \), the oscillator turns on.

Power-Ready Output

The Power-Ready Output (PR) signals control circuitry when the high-side voltage reaches a preset level. This feature can be used to protect external FET switches from excess dissipation and damage by preventing them from turning on, except when adequate gate drive levels are present. When power is applied, PR remains low until \(V_{OUT} \) reaches approximately \(V_{CC} + 8.5V \). PR also goes low if \(V_{OUT} \) falls below this level during operation, i.e., if the output is overloads. The PR high level is \(V_{CC} \).

Applications Information

Quiescent Supply Current

MAX1822 quiescent supply current varies with \(V_{CC} \) and with the values of \(C1, C2, \) and \(C3 \) (Typical Operating Characteristics). Even with no external load, the device must still pump to overcome internal losses. Large ratios between \(C3 \) and \(C1 \) or \(C2 \) require more charge-pump cycles to restore \(V_{OUT} \). As \(V_{CC} \) falls below 5V, quiescent current rises fairly rapidly to about 1mA at 4V (Typical Operating Characteristics). This rise occurs because \(V_{OUT} \) no longer pulse skips to regulate at low input voltages; the oscillator runs continuously, so supply current is higher. Figure 2 shows the test circuit for the MAX1822 quiescent supply current.
High-Side Power Supply

Output Ripple

V\text{OUT} ripple is typically 50mVp-p with \(V_{CC} = +5\text{V} \), \(C_1 \) and \(C_2 = 0.047\mu\text{F} \), and \(C_3 = 1\mu\text{F} \) (Typical Operating Characteristics). Ripple can be reduced by increasing the ratio between the output storage capacitors \(C_3 \) and \(C_1 \) and \(C_2 \). This is usually accomplished by increasing \(C_3 \) and keeping \(C_1 \) and \(C_2 \) in the 0.01µF to 0.047µF range. For example, if \(C_1 \) and \(C_2 \) are 0.047µF (\(V_{CC} \) must not exceed 13V) and \(C_3 \) is 10µF, output ripple typically falls to 15mV (Typical Operating Characteristics).

Capacitor Selection

Capacitor type is unimportant when selecting capacitors for the MAX1822. However, when \(V_{CC} \) exceeds 13V, \(C_1 \) and \(C_2 \) must be no greater than 0.01µF. Using larger value capacitors with input voltages above 13V causes excessive amounts of energy to pass through...
internal switches during charge-pump cycles. This may damage the device.

Output Protection

The MAX1822 is not internally short-circuit protected. In applications where the output is susceptible to short circuit, external output short-circuit protection must be provided. Accomplish this by connecting a resistor between \(V_{OUT} \) and the load to limit output current to less than 25mA. The resistor value is determined by the following formula:

\[
R_{CL} \geq \frac{V_{CC}}{25mA}
\]

Typical Applications

One MAX1822 Drives Six High-Side Switches

Multiple subsystems or modules can be turned on and off using a single MAX1822 and an open-drain hex buffer such as the 74C906 (Figure 3). The drains of all buffer outputs are pulled through resistors to the MAX1822’s \(V_{OUT} \). The pullup resistance depends on the number of channels being used with the MAX1822 and power-dissipation limitations. The minimum pullup resistor value is determined by the number of channels paralleled on each high-side power supply and the high-side output current from the MAX1822 at a given supply voltage, calculated as follows:

\[
R_{MIN} = \frac{V_{OUT} \times \text{(number of channels)}}{I_{OUT}}
\]

where \(V_{OUT} \) is the high-side output voltage and \(I_{OUT} \) is the output current of the MAX1822.

For example, assuming an output current of 1mA and six channels, as in Figure 3, the minimum pullup resistor value that will not excessively load the MAX1822 is about 100kΩ, assuming all six channels are pulled low at the same time. The value of the pullup resistor also affects the turn-on time of each FET, and hence the amount of energy dissipated in the FET during turn-on. The rate of rise of \(V_{GS} \) is limited by the RC time constant of the pullup resistor and FET gate capacitance; waste power will be dissipated in the FET equal to \((I_{LOAD})^2 \times r_{DS} \) during the RC time period.

H-Bridge Motor Driver

An H-bridge motor driver is shown in Figure 4. The motor direction can be controlled by toggling between IN1 and IN2 of the DG303 analog switch. Each switch section turns on the appropriate FET pair, which passes current through the motor in the desired direction.

Figure 4. H-Bridge Motor Controller
High-Side Power Supply

Multiple high-side switches can be driven from a single MAX1822 high-side power supply with no pullup resistors on the FET gates. In Figure 5, a MAX1822 supplies high-side voltage to a MAX333 quad analog switch to control any one of four high-side switches. The FET gates are normally connected to ground when the MAX333 logic inputs are low.

Low-Dropout Regulator

In Figure 6, a MAX1822 high-side power supply powers an LM10 reference and op-amp combination, providing sufficient gate drive to turn on the FET. This allows the regulator to achieve less than 70mV dropout at 1A load using an IRF541, and just under 20mV for a SMP60N06.

The 200mV reference section is configured for a gain of 25 (e.g., 200mV x 25 = 5V) and connects to the noninverting input of the op amp; the regulator’s output connects directly to the inverting input. The op amp amplifies the error between its inputs and varies the gate drive to the FET, regulating the output. Capacitor C6 reduces transients due to load changes; its size depends on the magnitude of the load change in the application and can be reduced or eliminated if the load remains relatively constant. With C6 = 1000µF, the output transient to a 1A load pulsed at 20Hz is typically less than 150mV. The regulator is turned on by applying V_BATT to the Enable/Shutdown input and turned off by pulling this input to ground.

The regulator output voltage, V_OUT, is set by the ratio of R1 to R2, calculated as follows:

$$ R2 = R1 \left(\frac{V_{OUT}}{0.2} - 1 \right) $$

If the application does not require logic shutdown, connect the MAX1822 VCC pin directly to the battery and eliminate D2.

Figure 5. MAX1822 Powering a MAX333 Quad Analog Switch, Realizing a 4-Channel Load Switch with No Pullup Resistors

4-Channel Load Switch with No Pullup Resistors

All capacitors = 1µF (Note 2)
All transistors = IRF541 (Note 1)

NOTE 1: Transistor type depends on load-current requirements.
NOTE 2: 1µF capacitors suppress switching transients—value depends on load current.
Figure 6. Ultra-Low Dropout Positive Voltage Regulator with Logic-Controlled Enable/Shutdown.

Chip Information

TRANSISTOR COUNT: 158
High-Side Power Supply

Package Information

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
© 2001 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products.

Table 1

<table>
<thead>
<tr>
<th>INCHES</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIN</td>
<td>MAX</td>
</tr>
<tr>
<td>A</td>
<td>0.053</td>
</tr>
<tr>
<td>A1</td>
<td>0.014</td>
</tr>
<tr>
<td>B</td>
<td>0.010</td>
</tr>
<tr>
<td>C</td>
<td>0.007</td>
</tr>
<tr>
<td>e</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>0.150</td>
</tr>
<tr>
<td>H</td>
<td>0.228</td>
</tr>
<tr>
<td>h</td>
<td>0.010</td>
</tr>
<tr>
<td>L</td>
<td>0.016</td>
</tr>
<tr>
<td>D</td>
<td>0.189</td>
</tr>
<tr>
<td>d</td>
<td>0.337</td>
</tr>
<tr>
<td>D1</td>
<td>0.386</td>
</tr>
</tbody>
</table>

Notes:
1. Dimensions do not include mold flash or protrusions.
2. Mold flash or protrusions not to exceed 0.008 inch (0.02 mm) total.
3. Leads to be coplanar within 10 mils (0.254 mm).
5. Meets JEDEC MS002-20 as shown in above table.
6. N = number of pins.

Figure 2

Package family outline: SOIC .150"