General Description
Maxim's Rainier family of isolated power devices enable cooler, smaller, and simpler power-supply solutions. The MAX17691A/B is a high efficiency no-opto integrated nMOSFET flyback converter that uses fixed frequency peak current mode control. The device senses the isolated output voltage directly from the primary-side flyback waveform during the off-time of the integrated nMOSFET. No secondary-side error amplifier and optocoupler are required to provide an accurate, isolated, regulated output voltage, saving up to 20% of PCB space normally required for a traditional flyback converter.

The MAX17691A/B features a low $R_{DS(ON)}$, 76V, 170mΩ integrated nMOSFET primary switch and is designed to operate over a wide supply range from 4.2V to 60V. The switching frequency of the device is programmable from 100kHz to 350kHz. An EN/UVLO feature allows the user to turn ON/OFF the power converter precisely at the desired input voltage. Input overvoltage protection can be implemented using the OVI pin (MAX17691A only). Soft-start limits inrush current at startup. The MAX17691A/B supports external clock synchronization to avoid low-frequency “beats” on the input bus in systems with multiple converters. The device also has programmable frequency dithering for low-EMI, spread-spectrum operation.

The MAX17691A/B allows temperature compensation for variations in the output rectifier diode forward voltage drop. The MAX17691A is internally compensated for loop stability, while the MAX17691B offers external loop compensation flexibility. The MAX17691A/B has robust hiccup-protection and thermal protection schemes, and is available in a space-saving 12-pin, 3mm x 3mm TDFN package with a temperature range from -40°C to +125°C.

Benefits and Features
- Reduces External Components and Total Cost
 - Eliminates the Optocoupler and Secondary-Side Error Amplifier
 - Up to 20% Space Savings
 - 76V, Low $R_{DS(ON)}$ Integrated nMOSFET
 - Internal Loop Compensation (MAX17691A)
 - Built-In Soft-Start
- Reduces Power Dissipation
 - > 90% Efficiency
 - Delivers up to 7.5W Output Power
 - Frequency Fold-Back Enables Enhanced Light-Load Efficiency
 - 2.5µA Shutdown Current
- Supports Key System-Level Design Requirements
 - Frequency Dithering Supports Low-EMI, Spread-Spectrum Operation
 - Switching Frequency Synchronization
 - Compliant with CISPR22 ClassB EMI Requirements
- Operates Reliably in Adverse Environments
 - Optional Output Voltage Temperature Compensation
 - Hiccup Current-Limit Protection
 - Programmable EN/UVLO Threshold
 - Input Overvoltage (OVI) Protection (MAX17691A)
 - Overtemperature Protection
 - High Industrial -40°C to +125°C Ambient Operating Temperature Range/ -40°C to +150°C Junction Temperature Range

Applications
- Isolated Power Supplies
- PLC I/O Modules
- IGBT Gate Drive Supplies
- Industrial and Telecom Applications

Ordering Information appears at end of data sheet.
Typical Application Circuit
Absolute Maximum Ratings

- \(V_{IN}, EN/UVLO \) to GND: \(-0.3V \) to +70V
- \(LX \) to GND: \(-0.3V \) to +80V
- \(V_{IN} \) to \(FB \): \(-0.3V \) to +0.3V
- \(V_{CC} \) to GND: \(-0.3V \) to +16V
- OVI (MAX17691A): \(-0.3V \) to +6V
- COMP (MAX17691B): \(-0.3V \) to +6V
- RT, SYNC/DITHER, SS, SET, and TC/\(V_{CM} \) to GND: \(-0.3V \) to +6V
- LX RMS Current: \(+1.72A\)

Continuous Power Dissipation (Single-Layer Board) (\(T_A = +70^\circ C \))
- 1269.80mW

Continuous Power Dissipation (Multilayer Board) (\(T_A = +70^\circ C \))
- 1951.20mW

Operating Temperature Range (Note 1)
- \(-40^\circ C \) to +125°C

Junction Temperature
- \(+150^\circ C\)

Storage Temperature Range
- \(-65^\circ C \) to +150°C

Soldering Temperature (reflow)
- \(-65^\circ C \) to +150°C

Note 1: Junction temperature greater than +125°C degrades operating lifetimes.

Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Package Information

12 TDFN

<table>
<thead>
<tr>
<th>Package Code</th>
<th>TD1233+1C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outline Number</td>
<td>21-0664</td>
</tr>
<tr>
<td>Land Pattern Number</td>
<td>90-0397</td>
</tr>
</tbody>
</table>

THERMAL RESISTANCE, SINGLE-LAYER BOARD

- Junction-to-Ambient (\(\theta_{JA} \))
 - 63°C/W
- Junction-to-Case Thermal Resistance (\(\theta_{JC} \))
 - 8.5°C/W

THERMAL RESISTANCE, FOUR-LAYER BOARD

- Junction-to-Ambient (\(\theta_{JA} \))
 - 41°C/W
- Junction-to-Case Thermal Resistance (\(\theta_{JC} \))
 - 8.5°C/W

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”, “#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.
Electrical Characteristics

(V\text{IN} = V\text{FB} = V\text{EN/UVLO} = 24V, V\text{OVI} = 0V (MAX17691A), COMP = OPEN (MAX17691B), C\text{VCC} = 2.2\mu F to GND; V\text{GND} = V\text{TC/VCM} = V\text{SYNC/DITHER} = 0V, RT, LX, SS = OPEN, R\text{SET} = 10k\Omega, T_{A} = -40^\circ C to +125^\circ C, unless otherwise noted. Typical values are at T_{A} = +25^\circ C. All voltages are referenced to GND, unless otherwise noted.) (Note 2)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPUT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input-Voltage Range</td>
<td>V\text{IN}</td>
<td></td>
<td>4.2</td>
<td>60</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Input-Supply Shutdown Current</td>
<td>I\text{IN_SHDN}</td>
<td>EN/UVLO = GND</td>
<td>2.5</td>
<td></td>
<td></td>
<td>\mu A</td>
</tr>
<tr>
<td>Input-Supply Current</td>
<td>I\text{Q}</td>
<td>No Load</td>
<td>0.95</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>EN/UVLO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN/UVLO Threshold</td>
<td>V\text{ENR}</td>
<td>V\text{EN Rising}</td>
<td>1.19</td>
<td>1.215</td>
<td>1.24</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>V\text{ENF}</td>
<td>V\text{EN Falling}</td>
<td>1.07</td>
<td>1.1</td>
<td>1.12</td>
<td>V</td>
</tr>
<tr>
<td>True Shutdown EN/UVLO Threshold</td>
<td>V\text{ENSHDN}</td>
<td></td>
<td>0.8</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>EN/UVLO Input Leakage Current</td>
<td>I\text{ENLKG}</td>
<td>V\text{EN} = 2V, T_{A} = T_{J} = +25^\circ C</td>
<td>-100</td>
<td></td>
<td>+100</td>
<td>nA</td>
</tr>
<tr>
<td>V\text{CC}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V\text{CC Regulation Voltage}</td>
<td>V\text{CC}</td>
<td>V\text{IN} = 7V, 100\mu A \leq I\text{VCC} \leq 5mA</td>
<td>5.56</td>
<td>5.77</td>
<td>5.9</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7V \leq V\text{IN} \leq 60V, I\text{VCC} = 100\mu A</td>
<td>5.56</td>
<td>5.77</td>
<td>5.9</td>
<td>V</td>
</tr>
<tr>
<td>V\text{CC Current Limit}</td>
<td>I\text{VCC_MAX}</td>
<td>V\text{IN} = 7V, V\text{VCC} = 4.3V</td>
<td>9.5</td>
<td>15</td>
<td>30</td>
<td>mA</td>
</tr>
<tr>
<td>V\text{CC Dropout}</td>
<td>V\text{DO}</td>
<td>V\text{IN} = 4.5V, I\text{VCC} = 3.5mA</td>
<td>120</td>
<td>240</td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>V\text{CC UVLO}</td>
<td>V\text{VCC-UVR}</td>
<td>Rising</td>
<td>3.9</td>
<td>4.0</td>
<td>4.1</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>V\text{VCC-UVF}</td>
<td>Falling</td>
<td>3.7</td>
<td>3.8</td>
<td>3.9</td>
<td>V</td>
</tr>
<tr>
<td>OVI (MAX17691A)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OVI Threshold</td>
<td>V\text{OVI_R}</td>
<td>OVI Rising</td>
<td>1.19</td>
<td>1.215</td>
<td>1.24</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>V\text{OVI_F}</td>
<td>OVI Falling</td>
<td>1.07</td>
<td>1.1</td>
<td>1.12</td>
<td>V</td>
</tr>
<tr>
<td>OVI Response Time</td>
<td>V\text{OVI step from 1V to 1.245V (30mV Overdrive)}</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td>\mu s</td>
</tr>
<tr>
<td>OVI Input-Leakage Current</td>
<td>I\text{OVI}</td>
<td>V\text{OVI} = 2V, T_{A} = T_{J} = 25^\circ C</td>
<td>-100</td>
<td></td>
<td>+100</td>
<td>nA</td>
</tr>
<tr>
<td>RT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switching-Frequency Range</td>
<td>f\text{SW}</td>
<td></td>
<td>100</td>
<td></td>
<td>350</td>
<td>kHz</td>
</tr>
<tr>
<td>Switching-Frequency Accuracy</td>
<td>f\text{SW} = 100kHz to 350kHz</td>
<td></td>
<td>-6</td>
<td></td>
<td>+6</td>
<td>%</td>
</tr>
<tr>
<td>Default Switching Frequency</td>
<td>RT = OPEN</td>
<td></td>
<td></td>
<td></td>
<td>200</td>
<td>kHz</td>
</tr>
<tr>
<td>SYNC/DITHER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Synchronization Logic-High Input</td>
<td>V\text{IH}</td>
<td></td>
<td>2.1</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Synchronization Logic-Low Input</td>
<td>V\text{IL}</td>
<td></td>
<td>0.8</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Synchronization Pulse-Width</td>
<td></td>
<td></td>
<td>100</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
</tbody>
</table>
Electrical Characteristics (continued)

(V_{IN} = V_{FB} = V_{EN/UVLO} = 24V, V_{OVI} = 0V (MAX17691A), COMP = OPEN (MAX17691B), C_{VCC} = 2.2μF to GND; V_{GND} = V_{TC/VCM} = V_{SYNC/DITHER} = 0V, RT, LX, SS = OPEN, R_{SET} = 10kΩ, T_{A} = -40°C to +125°C, unless otherwise noted. Typical values are at T_{A} = +25°C. All voltages are referenced to GND, unless otherwise noted.) (Note 2)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dithering Ramp Charging Current</td>
<td>I_{SS}</td>
<td>4.75</td>
<td>5</td>
<td>5.25</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>Dithering Ramp Discharging Current</td>
<td>I_{SS}</td>
<td>3.8</td>
<td>5.0</td>
<td>6.5</td>
<td>ms</td>
<td></td>
</tr>
<tr>
<td>Soft-Start Charging Current</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Default Soft-Start Time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Duty Cycle</td>
<td>D_{MAXOSC}</td>
<td>(Note 3)</td>
<td>65</td>
<td>68</td>
<td>71</td>
<td>%</td>
</tr>
<tr>
<td>Minimum LX On-Time</td>
<td>t_{ON_MIN}</td>
<td></td>
<td>150</td>
<td>180</td>
<td>210</td>
<td>ns</td>
</tr>
<tr>
<td>Minimum LX Off-Time To Sample Output Voltage</td>
<td>t_{OFF_MIN}</td>
<td>300</td>
<td>340</td>
<td>380</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Internal MOSFET On Resistance</td>
<td>R_{DSON}</td>
<td>I_{LX} = 300mA</td>
<td></td>
<td></td>
<td>170</td>
<td>325</td>
</tr>
<tr>
<td>CURRENT LIMIT (I_{LIM})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Current Limit</td>
<td>I_{LX-PEAK-MAX}</td>
<td>MAX17691A/B</td>
<td>2.8</td>
<td>3.0</td>
<td>3.2</td>
<td>A</td>
</tr>
<tr>
<td>Runaway Current Limit</td>
<td>I_{LX-RUNAWAY}</td>
<td>MAX17691A/B</td>
<td>3.4</td>
<td>3.6</td>
<td>3.8</td>
<td>A</td>
</tr>
<tr>
<td>Overcurrent Hiccup Timeout</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16384</td>
<td>CYCLE</td>
</tr>
<tr>
<td>Minimum Peak Current</td>
<td>I_{LX-PEAK-MIN}</td>
<td>MAX17691A/B</td>
<td>0.42</td>
<td>0.5</td>
<td>0.58</td>
<td>A</td>
</tr>
<tr>
<td>SET</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SET Regulation Voltage</td>
<td>V_{SET}</td>
<td></td>
<td>0.988</td>
<td>1</td>
<td>1.012</td>
<td>V</td>
</tr>
<tr>
<td>TC/VCM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TC/VCM Pin Bias Voltage</td>
<td>V_{TC-BIAS}</td>
<td>T_{A} = T_{J} = 25°C</td>
<td></td>
<td></td>
<td>0.55</td>
<td>V</td>
</tr>
<tr>
<td>Temperature Compensation Coefficient</td>
<td>\frac{\partial V_{TC/VCM}}{\partial T}</td>
<td></td>
<td></td>
<td></td>
<td>+1.85</td>
<td>mV/°C</td>
</tr>
<tr>
<td>COMP (MAX17691B)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error Amplifier Transconductance</td>
<td>G_m</td>
<td></td>
<td></td>
<td></td>
<td>660</td>
<td>μS</td>
</tr>
<tr>
<td>COMP Source Current</td>
<td>I_{COMP_SOUR}</td>
<td>V_{COMP} = 2V, V_{SET} = 0.8V</td>
<td></td>
<td></td>
<td>55</td>
<td>μA</td>
</tr>
<tr>
<td>COMP Sink Current</td>
<td>I_{COMP_SINK}</td>
<td>V_{COMP} = 2V, V_{SET} = 1.2V</td>
<td></td>
<td></td>
<td>55</td>
<td>μA</td>
</tr>
</tbody>
</table>
Electrical Characteristics (continued)

(V\textsubscript{IN} = V\textsubscript{FB} = \textit{V}_\text{EN/UVLO} = 24\text{V}, V\textsubscript{OVI} = 0\text{V} (MAX17691A), COMP = OPEN (MAX17691B), C\textsubscript{VCC} = 2.2\text{µF} to GND; V\textsubscript{GND} = V\textsubscript{TC/VCM} = V\textsubscript{SYNC/DITHER} = 0\text{V}, \text{RT, LX, SS} = OPEN, R\textsubscript{SET} = 10k\Omega, T\textsubscript{A} = -40\text{°C} to +125\text{°C}, unless otherwise noted. Typical values are at T\textsubscript{A} = +25\text{°C}. All voltages are referenced to GND, unless otherwise noted.) (Note 2)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal Shutdown T\textsubscript{H}reshold</td>
<td>T\textsubscript{SH}</td>
<td></td>
<td>160</td>
<td></td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td>Thermal Shutdown Hysteresis</td>
<td></td>
<td></td>
<td>10</td>
<td></td>
<td></td>
<td>°C</td>
</tr>
</tbody>
</table>

Note 2: Electrical specifications are production tested at T\textsubscript{A} = +25\text{°C}. Specifications over the entire operating temperature range are guaranteed by design and characterization.

Note 3: Maximum duty cycle (D\textsubscript{MAXOSC}) is not valid when an external clock is applied to the SYNC/DITHER pin. During external clock synchronization the minimum off-time on LX is decided by the internal oscillator frequency, which is set by R\textsubscript{RT}. (See the External Clock Synchronization and Switching Frequency Dithering (SYNC / DITHER) section for more details.)
Typical Operating Characteristics

($V_{IN} = V_{EN/UVLO} = 24V$, $V_{OVI} = V_{GND} = 0V$, $C_{IN} = 10\mu F$, $C_{VCC} = 2.2\mu F$, $T_A = +25^\circ C$ unless otherwise noted.)

- MAX17691A, 5V OUTPUT
 - EFFICIENCY vs. LOAD CURRENT
 - LOAD CURRENT (mA)

- MAX17691B, 5V OUTPUT
 - EFFICIENCY vs. LOAD CURRENT
 - LOAD CURRENT (mA)

- MAX17691A, 5V OUTPUT
 - LOAD AND LINE REGULATION
 - LOAD CURRENT (mA)

- MAX17691B, 5V OUTPUT
 - LOAD AND LINE REGULATION
 - LOAD CURRENT (mA)

- MAX17691A
 - OUTPUT VOLTAGE vs. TEMPERATURE
 - TEMPERATURE (°C)

- MAX17691B
 - OUTPUT VOLTAGE vs. TEMPERATURE
 - TEMPERATURE (°C)

- MAX17691A, SOFT-START
 - 5V OUTPUT, 1.5A LOAD
 - TEMPERATURE (°C)

- MAX17691B, SOFT-START
 - 5V OUTPUT, 1.5A LOAD
 - TEMPERATURE (°C)
Typical Operating Characteristics (continued)

(VIN = VEN/UVLO = 24V, VOVI = VGND = 0V, Cin = 10μF, CVCC = 2.2μF, TA = +25°C unless otherwise noted.)
Typical Operating Characteristics (continued)

\(V_{\text{IN}} = V_{\text{EN/UVLO}} = 24\text{V}, V_{\text{OV}} = V_{\text{GND}} = 0\text{V}, C_{\text{IN}} = 10\mu\text{F}, C_{\text{VCC}} = 2.2\mu\text{F}, T_{\text{A}} = +25^\circ\text{C} \) unless otherwise noted.

MAX17691A/MAX17691B
4.2V–60V No-Opto Isolated Flyback Converter with Integrated FET

www.maximintegrated.com
19-100784
Maxim Integrated | 9
Pin Configuration

MAX17691A/MAX17691B

- **Pin Description**

<table>
<thead>
<tr>
<th>PIN</th>
<th>NAME</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>V_IN</td>
<td>Input Supply Voltage Pin. The input supply voltage range is 4.2V to 60V. This pin acts as a reference pin for the feedback resistor connected to the FB pin. Connect a minimum of 1μF ceramic capacitor between the V_IN pin and GND.</td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
<td>Ground Pin. Connect GND to the primary side ground plane. See the MAX17691A/MAX17691B EV kit for a sample PCB layout.</td>
</tr>
<tr>
<td>3</td>
<td>V_CC</td>
<td>Linear Regulator Output Pin. Connect a 2.2μF (min) bypass capacitor from the V_CC pin to GND and place close to the MAX17691A/MAX17691B.</td>
</tr>
<tr>
<td>4</td>
<td>SYNC/DITHER</td>
<td>Frequency Dithering or External Clock Synchronization Pin. For spread-spectrum frequency dithering, connect a capacitor to GND and a resistor to RT. Connect SYNC/DITHER to an external clock source for synchronization. When the SYNC/DITHER function is not used, this pin should be connected to ground for proper operation. See the External Clock Synchronization and Switching Frequency Dithering section for more details.</td>
</tr>
<tr>
<td>5</td>
<td>RT</td>
<td>Switching Frequency Programming Pin. Connect a resistor R_RT from the RT pin to GND to set the PWM switching frequency. Leave this pin open to select 200kHz as a default switching frequency. See the Switching Frequency section for appropriate R_RT resistor selection.</td>
</tr>
</tbody>
</table>
Pin Description (continued)

<table>
<thead>
<tr>
<th>PIN</th>
<th>NAME</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>TC/V_CM</td>
<td>Dual Function Pin. The TC/V_CM pin is used for programming the output-diode forward-voltage temperature compensation and selecting an appropriate common-mode voltage setting. See the Selection of Temperature Compensation Resistor (R_TC/V_CM) section to select an appropriate resistor for this pin.</td>
</tr>
<tr>
<td>7</td>
<td>SS</td>
<td>Soft-Start Pin. Connect a capacitor C_SS from the SS pin to GND to program the soft-start time above 5ms. Leave the SS pin open for a 5ms default soft-start time.</td>
</tr>
<tr>
<td>8</td>
<td>SET</td>
<td>SET Pin. Connect a 10k\Omega resistor with 1% or better tolerance from this pin to GND and place as close as possible to MAX17691A/B.</td>
</tr>
<tr>
<td>9</td>
<td>OVI__MAX17691A</td>
<td>Input Overvoltage Protection Pin. Connect a resistor-divider between the input supply, OVI, and GND to set the input overvoltage threshold. The MAX17691A stops switching when the voltage at the OVI pin exceeds 1.215V and resumes switching when the voltage at the OVI pin falls below 1.1V.</td>
</tr>
<tr>
<td>9</td>
<td>COMP__MAX17691B</td>
<td>Error Amplifier Output Pin. Connect a frequency compensation network between the COMP pin and GND. See the Loop Compensation (MAX17691B only) section for more details.</td>
</tr>
<tr>
<td>10</td>
<td>EN/UVLO</td>
<td>Enable/Undervoltage Lockout Pin. Connect a resistor-divider between the input supply, EN/UVLO, and GND to set the input turn-on threshold. The MAX17691A/B starts switching when the voltage at the EN/UVLO pin exceeds 1.215V and stops switching when the voltage at the EN/UVLO pin falls below 1.1V.</td>
</tr>
<tr>
<td>11</td>
<td>FB</td>
<td>Feedback Input Pin. The FB pin is used for sensing the reflected output voltage during a flyback period. A resistor connected between this pin and the LX node is used to program the output voltage. See the Output Voltage Setting section for more details.</td>
</tr>
<tr>
<td>12</td>
<td>LX</td>
<td>Switching Node. This node is connected to the drain of the integrated n-channel power MOSFET. Connect LX to the primary-side switching node of the flyback transformer.</td>
</tr>
</tbody>
</table>
MAX17691A/MAX17691B

4.2V–60V No-Opto Isolated Flyback Converter with Integrated FET

Functional Diagrams

MAX17691A/MAX17691B

- OSC
- EN/UVLO
- MAX17691A/B
- THERMAL SENSOR
- LDO
- CLK
- VCC
- VCC UVLO
- CHIPEN
- SAMPLE AND HOLD
- MUX
- DRIVER
- MINIMUM VOLTAGE SELECTOR
- INTERNAL SOFT-START RAMP
- INTERNAL COMPENSATION (MAX17691A ONLY)
- SET
- CHIPEN
- VFB
- COMP
- OVI COMPARATOR (MAX17691A ONLY)
- INTERNAL SOFT-START RAMP
- VCC UVLO
- TC/VCM
- VTSH
- TSH
- ILX
- RT
- GND
- SYNC/DITHER

www.maximintegrated.com

Maxim Integrated | 12
Detailed Description

For low- and medium-power applications, the flyback converter is the preferred choice due to its simplicity and low cost. However, in isolated applications, the use of an optocoupler with secondary-side error amplifiers or auxiliary winding for voltage feedback across the isolation boundary increases the number of components and design complexity. The MAX17691A/MAX17691B eliminates these components by implementing an innovative algorithm to sample and regulate the output voltage by primary-side sensing. During the flyback period, the reflected voltage across the primary winding is proportional to the sum of the output voltage, diode forward voltage, and the drop across transformer parasitic elements. By sampling and regulating this reflected voltage when the secondary current is close to zero, the algorithm minimizes the effect of transformer parasitic elements and the diode forward voltage on the output voltage regulation. The MAX17691A/MAX17691B also integrates the nMOSFET, further simplifying the converter design and layout.

Supply Voltage

The MAX17691A/MAX17691B supports a wide operating input-voltage range from 4.2V to 60V. The converter regulates the voltage across the primary winding by maintaining FB pin voltage close to \(V_{IN} \) pin of the IC. Therefore, the \(V_{IN} \) pin should be directly connected to the power supply connection of the primary winding.

LDO Output (\(V_{CC} \))

The regulated output of the internal LDO is available at the \(V_{CC} \) pin. The LDO output voltage is 5.77V (typ). Connect a 2.2\(\mu \)F (min) ceramic capacitor between the \(V_{CC} \) and GND pins for stable operation over the full temperature range. Ceramic capacitors have a DC-bias derating effect that should be considered. The derated capacitance should be higher than 1\(\mu \)F over temperature. Place this capacitor as close as possible to the IC.

In case of high input voltage applications, overall system efficiency can be improved by overdriving \(V_{CC} \) using an additional auxiliary winding on the power transformer. While the converter is enabled, the winding output voltage on \(C_{VCC} \) should be higher than maximum \(V_{CC} \) regulation voltage (5.9V) to disable the internal LDO. Also, to avoid the internal LDO body diode conduction, the \(C_{VCC} \) voltage should be less than the input-supply voltage. Typically the auxiliary winding should be designed to output a voltage between 6.5V and 14V to ensure that the internal LDO turns off and the IC is supplied from the auxiliary winding output. The typical circuit for overdriving the \(V_{CC} \) is shown in Figure 1.

![Figure 1. \(V_{CC} \) Pin Overdrive Configuration](image-url)
Enable/Undervoltage Lockout (EN/UVLO) and Overvoltage Protection (OVI)

The EN/UVLO pin serves as an enable/disable input, as well as an accurate programmable input under-voltage lockout threshold (UVLO) pin. The MAX17691A/B do not commence switching operation until the EN/UVLO pin voltage exceeds 1.215V (typ). The MAX17691A/B turns off if the EN/UVLO pin voltage falls below 1.1V (typ). A resistor-divider from \(V_{IN} \) to GND can be used to divide and apply a fraction of the input voltage \(V_{IN} \) to the EN/UVLO pin as shown in Figure 2. The values of the resistor-divider can be selected such that the EN/UVLO pin voltage exceeds the EN/UVLO turn-on threshold at the desired input supply voltage.

For the MAX17691B, choose \(R_{EN1} \) to be 3.3MΩ (max) and then calculate \(R_{EN2} \) as follows:

\[
R_{EN2} = \frac{1.215 \times R_{EN1}}{V_{START} - 1.215}
\]

where,

\(V_{START} \) = Minimum input voltage at which the device is required to turn on.
\(R_{EN1} \) = Top resistor of EV/UVLO voltage divider.
\(R_{EN2} \) = Bottom resistor of EV/UVLO voltage divider.

For the MAX17691A, the resistor-divider is modified with an additional resistor \(R_{OVI} \) to implement input overvoltage protection in addition to EN/UVLO function as shown in Figure 3. When the voltage at the OVI pin exceeds 1.215V (typ), the device stops switching. The device resumes switching only if the voltage at the OVI pin falls below 1.1V (typ). For given values of minimum input voltage for startup \((V_{START}) \) and input overvoltage protection voltage \((V_{OVI}) \) in MAX17691A, the resistor values for the divider can be calculated as follows,

\[
R_{ENB} = R_{OVI} \times \left[\frac{V_{OVI}}{V_{START}} - 1 \right]
\]

\[
R_{ENU} = \left[R_{OVI} + R_{ENB} \right] \times \left[\frac{V_{START}}{1.215} - 1 \right]
\]

where, \(V_{OVI} \) is the maximum input voltage at which the device is required to turn-off.

If the OVI feature is not used, \(R_{ENB} \) and \(R_{ENU} \) should be calculated using a procedure similar to that outlined in the MAX17691B equation above, and OVI should be connected to GND.

\[
Figure 2. Programming EN/UVLO in MAX17691B
\]
Figure 3. Programming EN/UVLO and OVI in MAX17691A

Soft-Start Time

The soft-start feature reduces input inrush current during startup. During the soft-start time, the soft-start ramp on the reference input of the error amplifier increases the output voltage at the desired rate and limits current into the output capacitor. With SS open, the MAX17691A/B offers a default 5ms (typ) soft-start time. The soft-start time can also be programmed to more than 5ms by placing a capacitor C_{SS} from SS to GND.

C_{SS} can be calculated using the following equation.

$$C_{SS} = 5 \times t_{SS}$$

where,

C_{SS} = Soft-start capacitor in nF.

t_{SS} = Soft-start time in ms.

Switching Frequency

The switching frequency of the MAX17691A/B is programmable between 100kHz to 350kHz using a resistor R_{RT} connected between RT and GND. Also, the MAX17691A/B offers a default 200kHz switching frequency when the RT pin is left open.

Use the following equation to determine the appropriate value of R_{RT} needed to generate the desired switching frequency (f_{SW}):

$$R_{RT} = \frac{10^7}{f_{SW}}$$

where,

R_{RT} = RT pin resistor in kΩ.

f_{SW} = Switching frequency in Hz.

External Clock Synchronization and Switching Frequency Dithering (SYNC/DITHER)

The SYNC/DITHER pin of the MAX17691A/B can be used for either external clock synchronization or switching frequency dithering. Connect a resistor, R_{DITHER} from the RT pin to SYNC/DITHER, and a capacitor C_{DITHER} from SYNC/DITHER to GND as shown in Figure 4 for switching frequency dithering.

When the dithering function is not used, an external clock can be directly connected to the SYNC/DITHER pin as shown in Figure 5. To synchronize the internal oscillator frequency to an external clock frequency. When both external clock synchronization and switching frequency dithering is not used, SYNC/DITHER should be connected to GND for proper converter operation.
Frequency dithering spreads the energy at the switching frequency and its harmonics over a wider frequency band; thus, reducing their peaks and helping to meet stringent EMI goals. The MAX17691A/B offers spread-spectrum frequency dithering in the range of ±4% to ±12% of the switching frequency. A 21μA current source from VCC charges the \(C_{DITHER} \) capacitor to 2V (typ). Upon reaching 2V, a sink current of 21μA to GND discharges \(C_{DITHER} \) to 0.4V (typ). The charging and discharging of the \(C_{DITHER} \) capacitor generates a triangular waveform of frequency \(f_{TRI} \) on the SYNC/DITHER pin with magnitude levels at 2V and 0.4V, respectively. Since the RT pin is regulated to 1.215V (typ) internally, a resistor \(R_{DITHER} \) connected from SYNC/DITHER to RT linearly modulates the nominal switching frequency due to the triangular waveform generated on the SYNC/DITHER pin.

For the desired dithering, calculate the appropriate values for \(C_{DITHER} \) and \(R_{DITHER} \) using the procedure given below.

\[
C_{DITHER} = \frac{21 \times 10^{-6}}{3.2 \times f_{TRI}}
\]

where, \(f_{TRI} \) is the frequency of the triangular waveform on the SYNC/DITHER pin. The programmable range for \(f_{TRI} \) is 100Hz to 1kHz.

\[
R_{DITHER} = \frac{66 \times R_{RT}}{\%DITHER}
\]

where,

\(R_{RT} = \) Switching frequency programmable resistor.

\(\%DITHER = \) Amount of dither expressed as a percentage of nominal switching frequency.

For example, setting \(R_{DITHER} \) to 10 times of \(R_{RT} \) generates ±6.6% dithering.

The internal oscillator can be synchronized to an external clock\((f_{SYNC}) \) by applying the external clock to the SYNC/DITHER pin directly. The external clock is detected at the rising edge of the 9th consecutive clock cycle. Depending on the timing of 9th pulse rising edge during one time period of the internal oscillator, the switching is synchronized to the external clock frequency either on the 10th or 11th pulse of the external clock. Refer to the Electrical Characteristics table for recommended magnitude and pulse-width of the external clock.

The allowable external clock frequency range is from 1.1x to 1.32x the internal oscillator frequency. When external clock synchronization is used, choose \(R_{RT} \) so that the programmed nominal oscillator frequency \((f_{RT}) \) is 10% below the minimum external clock frequency, i.e., \(f_{RT} = 0.9 \times f_{SYNC} \).

With external clock synchronization, the minimum off-time on LX is decided by the internal oscillator frequency, set by \(R_{RT} \). Hence, during synchronization, the allowable maximum duty cycle \((D_{MAXSYNC}) \) that can be used in an application is reduced and is given by:

\[
D_{MAXSYNC} = 1 - \frac{f_{SYNC}}{f_{RT}} \times (1 - D_{MAXOSC})
\]

where, \(D_{MAXOSC} = \) Oscillator maximum duty cycle.
Output Voltage Setting (SET and FB)

The MAX17691A/B uses the current in the feedback resistor (R_{FB}) placed between FB and LX to sense the reflected output voltage during the output rectifier conduction time as shown in Figure 6. This current through the R_{FB} resistor also flows through the R_{SET} resistor placed between SET and GND and produces a ground referenced voltage. The voltage across the R_{SET} resistor is sampled using a sample-and-hold circuit when the secondary current is close to zero. The sampled voltage (V_{FB}) feeds the inverting input terminal of internal error amplifier, with its noninverting input terminal fed by the internal reference voltage V_{REF}. The control loop regulates the sampled voltage (V_{FB}) to internal reference voltage V_{REF}. The above operation can be expressed as:

\[
\frac{V_{OUT}}{K} \times \frac{R_{SET}}{R_{FB}} = V_{REF}
\]

where,

- V_{OUT} = Output voltage.
- V_{D} = Output diode forward voltage drop.
- K = Transformer secondary-to-primary turns-ratio (N_{S}/N_{P}).
- V_{REF} = Internal reference voltage.
Temperature Compensation and Common-Mode Voltage Setting (TC/V_{CM})

TC/V_{CM} is a dual function pin. This pin is used to select an appropriate common-mode voltage range for proper operation of internal blocks based on the operating conditions of the converter as well as to implement temperature compensation for the output diode. The setting on the TC/V_{CM} pin is detected during power-up and latched. The TC/V_{CM} pin can be used to implement any one of two common-mode voltage settings (K_{VCM}), with or without temperature compensation (Figure 7). The temperature compensation for the output diode can be programmed in the range of -1mV/°C to -2mV/°C. A current (I_{PTAT}) that depends on the resistor (R_{TC/VCM}) connected to the TC/V_{CM} pin is applied at the SET pin to provide temperature compensation for changes in the MAX17691A/B junction temperature. This scheme assumes that the output diode temperature change tracks the MAX17691A/B junction temperature. Resistor values outside of those indicated in Figure 7 are not allowed. The Selection of TC/V_{CM} Resistor section details the design procedure for the K_{VCM} and TC/V_{CM} resistor.

<table>
<thead>
<tr>
<th>R<sub>TC/VCM</sub></th>
<th>V<sub>CM</sub> SETTING</th>
<th>I<sub>PTAT</sub></th>
<th>TEMPERATURE COMPENSATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPEN</td>
<td>K<sub>VCM</sub> ≥ 2.5</td>
<td>0</td>
<td>NO</td>
</tr>
<tr>
<td>SHORT</td>
<td>K<sub>VCM</sub> < 2.5</td>
<td>0</td>
<td>NO</td>
</tr>
<tr>
<td>5kΩ–25kΩ</td>
<td>K<sub>VCM</sub> < 2.5</td>
<td>0.15x<sub>V<sub>TC/VCM</sub></sub></td>
<td>YES (V<sub>TC/VCM</sub> R<sub>TC/VCM</sub>)</td>
</tr>
<tr>
<td>40kΩ–200kΩ</td>
<td>K<sub>VCM</sub> ≥ 2.5</td>
<td>1.2x<sub>V<sub>TC/VCM</sub></sub></td>
<td>YES (V<sub>TC/VCM</sub> R<sub>TC/VCM</sub>)</td>
</tr>
</tbody>
</table>

Figure 7. TC/V_{CM} Pin Configuration

Overcurrent Protection/Hiccup Mode

The MAX17691A/B provides a robust overcurrent protection scheme that protects the device in overload and output short-circuit conditions. A cycle-by-cycle current limit turns the power MOSFET off whenever the primary winding current exceeds an internal peak current limit. Either one occurrence of the runaway current limit event or 16 consecutive peak current limit events triggers a hiccup mode that protects the converter by immediately suspending switching for a period of 16,384 clock cycles. Once the hiccup time-out expires, soft-start is attempted again. Refer to the Electrical Characteristics table for peak current and runaway current-limit values of MAX17691A/B.
Applications Information

Transformer Design Considerations

The MAX17691A/B is optimized for implementing discontinuous mode flyback converters. The transformer design involves selecting a proper magnetizing inductance and transformer turns ratio along with the target switching frequency to meet the internal sampling algorithm requirements of the MAX17691A/B. Consider a design specification of minimum input voltage (V_{INMIN}), typical input voltage (V_{INTYP}), maximum input voltage (V_{INMAX}), output voltage (V_{OUT}), and output current (I_{OUT}).

The first step in the transformer design is to arrive at the secondary to primary turns ratio K (N_{S}/N_{P}). The minimum turns ratio K_{MIN} is constrained by the maximum operating voltage rating of the integrated nMOSFET (76V). The maximum voltage stress is experienced at the LX node (drain of integrated nMOSFET) when the integrated nMOSFET turns Off and energy is transferred to the output. The voltage stress at LX is the sum of the maximum operating input voltage (V_{INMAX}), the reflected output voltage and the voltage spike due to energy stored in the leakage inductance (V_{LKG}) of the transformer, given by the following equation:

\[V_{LX} = V_{INMAX} + \left(\frac{V_{OUT} + V_{D}}{K} \right) + V_{LKG} \]

where, V_{D} is the output diode forward voltage at full load.

The leakage Inductance voltage spike is limited at 1 to 1.5 times (K_{S}) the reflected voltage using a Zener-diode (ZD) clamp. Refer to the Voltage Clamp Design section for details.

\[V_{LXMAX} = V_{INMAX} + \frac{(V_{OUT} + V_{D})}{K_{MIN}} + \frac{K_{S} \times (V_{OUT} + V_{D})}{K_{MIN}} \leq 76V \]

K_{MIN} = \frac{\left(1 + K_{S}\right) \times \left(\frac{V_{OUT} + V_{D}}{76 - V_{INMAX}}\right)}{\left(\frac{1}{K_{MIN}}\right)}

Leakage Inductance should be specified and minimized to within 1% to 2% of the primary magnetizing Inductance of the transformer.

The maximum duty cycle of a flyback converter to DCM operation at minimum input voltage is given by,

\[D_{MAX} = \frac{V_{OUT} + V_{D}}{V_{OUT} + V_{D} + (K_{MIN} \times V_{INMIN})} \]

For the MAX17691A/B, the maximum duty cycle should be limited to D_{MAXOSC} = 0.65. If the calculated D_{MAX} for K_{MIN} in the above equation is less than the maximum duty cycle limit (D_{MAXOSC}), then K = K_{MIN}.

If the calculated D_{MAX} for K_{MIN} in the above equation exceeds the maximum duty cycle limit (D_{MAXOSC}), then the turns ratio should be recalculated using D_{MAX, IC} = 0.65 in the following equation:

\[K = \frac{(V_{OUT} + V_{D}) \times (1 - D_{MAX})}{D_{MAXOSC} \times V_{INMIN}} = \frac{(V_{OUT} + V_{D}) \times 0.538}{V_{INMIN}} \]

Once the turns ratio K is determined, the maximum operating duty cycle of the converter D_{VINMIN} is given by:

\[D_{VINMIN} = \frac{V_{OUT} + V_{D}}{V_{OUT} + V_{D} + (K \times V_{INMIN})} \]

The next step is to calculate the required primary magnetizing inductance (L_{MAG}) of the transformer. The MAX17691A/B obtains output voltage information from the reflected output voltage on the LX node during the secondary rectifier conduction period. To ensure proper sampling, the secondary winding needs to conduct current for a specified minimum time. The following equation gives the minimum required magnetizing inductance that satisfies the recommended 490ns minimum off-time requirements.
\[L_{\text{MAG_TOFF}} = 490 \times 10^{-9} \times \left(\frac{V_{\text{OUT}} + V_D}{0.42 \times K} \right) \]

where, \(L_{\text{MAG_TOFF}} \) = Minimum magnetizing inductance that satisfies the 490ns off-time.

The MAX17691A/B implements a minimum on time (\(t_{\text{ON_MIN}} \)) of 210ns (max) to blank the leading-edge current spike that occurs when the integrated nMOSFET turns On. The following equation gives the minimum required magnetizing inductance that satisfies the recommended 490ns (min) off-time requirements.

\[L_{\text{MAG_TON}} = \frac{210 \times 10^{-9}}{0.58} \times V_{\text{INMAX}} \]

where, \(L_{\text{MAG_TON}} \) = Minimum magnetizing inductance that satisfies the \(t_{\text{ON_MIN}} \).

The selected magnetizing inductance (\(L_{\text{MAG_SEL}} \)) should be higher than both \(L_{\text{MAG_TOFF}} \) and \(L_{\text{MAG_TON}} \). The manufacturer tolerance for the magnetizing inductance can be in the range of ±10% to ±20%. This variation should be considered in the following equation to specify the proper magnetizing inductance to ensure correct output-voltage sampling.

\[L_{\text{MAG}} = L_{\text{MAG_SEL}} \times (1 + \text{TOL}) \]

where, \(\text{TOL} = 0.1 \) for 10% tolerance and 0.2 for 20% tolerance in the magnetizing inductance.

In a DCM flyback converter, the energy stored in the primary inductance of the flyback transformer is delivered entirely to the output. The maximum switching frequency for which the converter remains in DCM (\(f_{\text{SW_DCM}} \)) at all operating conditions can be calculated as:

\[f_{\text{SW_DCM}} = \frac{\left(D_{\text{VINMIN}} \times V_{\text{INMIN}} \right)^2 \times \eta}{2 \times V_{\text{OUT}} \times I_{\text{OUT}} \times L_{\text{MAG}} \times (1 + \text{TOL})} \]

where, \(\eta \) is the converter target efficiency assumed to be in the range of 0.8 to 0.9. Note that the minimum programmable switching frequency is 100kHz (typ).

The primary winding peak current at full load (\(I_{\text{PEAK_DCM}} \)) can be specified using the below equation:

\[I_{\text{PEAK_DCM}} = \sqrt{\frac{2 \times V_{\text{OUT}} \times I_{\text{OUT}} \times L_{\text{MAG}} \times f_{\text{SW_DCM}} \times \eta}{L_{\text{MAG}} \times f_{\text{SW_DCM}} \times \eta}} \]

The \(I_{\text{PEAK_DCM}} \) should be lower than the minimum value of the peak current limit (\(I_{\text{LX_PEAK_MAX}} \)) set in the part, which is 2.8A to deliver the required full specified power.

Selecting a Secondary Rectifier

In a flyback converter, since the secondary rectifier is reverse-biased when the integrated nMOSFET is conducting, the voltage stress on the rectifier is the sum of the output voltage and the reflected input voltage. Choose the rectifier with enough margin for reverse blocking voltage as indicated in the below equation.

\[V_{\text{SEC_RECT}} = K_{\text{RSF}} \times (K \times V_{\text{INMAX}} + V_{\text{OUT}}) \]

where, \(K_{\text{RSF}} \) is the safety factor to account for additional voltage stress on the diode due to leakage inductance. It is recommended to choose \(K_{\text{RSF}} \) in the range of 1.5-2. Select a schottky diode with low forward-voltage drop and low junction capacitance to minimize power loss.

In applications which target high efficiency, an nMOSFET can be used as a rectifier to minimize power loss. The MAX17606, secondary-side synchronous MOSFET driver is an excellent choice to implement a DCM synchronous flyback design with MAX17691A/B. For more information, go to the design resource tab on the MAX17691A/B and MAX17606 product pages.
Selection of Temperature Compensation Resistor (RTC/V CM)
The output diode forward voltage (V D) in the V OUT equation has a significant negative temperature coefficient (−1mV/°C to −2mV/°C), which produces approximately 2% to 5% variation on the output voltage across temperatures in low output-voltage applications, such as 3.3V and 5V. To compensate for this variation, a positive temperature coefficient current is internally added to the SET pin by programming the TC/V CM pin with a resistor RTC/V CM. Follow the steps below to select the appropriate RTC/V CM:

1) From Table 1, select the factor (m f) for the selected switching frequency (f SWDCM).

Table 1. Factor m f Selection

<table>
<thead>
<tr>
<th>SWITCHING FREQUENCY (kHz)</th>
<th>m f</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 ≤ f SWDCM < 108</td>
<td>39000</td>
</tr>
<tr>
<td>108 ≤ f SWDCM < 162</td>
<td>58600</td>
</tr>
<tr>
<td>162 ≤ f SWDCM < 240</td>
<td>91100</td>
</tr>
<tr>
<td>240 ≤ f SWDCM ≤ 350</td>
<td>136700</td>
</tr>
</tbody>
</table>

2) Calculate the common mode voltage setting (K V CM) with the following equation:

\[K_{VCM} = m_f \times \frac{V_{OUT}}{R} \times \frac{1-D_{VINMIN}}{f_{SWDCM}} \]

3) Calculate the TC/V CM resistor (RTC/V CM) based on following equations.

For K V CM ≥ 2.5,

\[R_{TC/VCM} = 1.2 \times R_{SET} \times \left(0.55 + \frac{(V_{OUT} + V_D) \times \frac{\partial V_{TC/VCM}}{\partial T}}{\frac{\partial V_D}{\partial T}} \right) \]

For K V CM < 2.5,

\[R_{TC/VCM} = 0.15 \times R_{SET} \times \left(0.55 + \frac{(V_{OUT} + V_D) \times \frac{\partial V_{TC/VCM}}{\partial T}}{\frac{\partial V_D}{\partial T}} \right) \]

where,

RTC/V CM = Temperature compensation resistor in Ω. Resistor values outside of those indicated in Figure 7 are not allowed.

V D = Forward voltage drop of the secondary rectifier diode in Volts.

\(\frac{\partial V_D}{\partial T} \) = Temperature coefficient of the secondary rectifier diode in mV/°C, which can be obtained from the data sheet of a secondary rectifier diode. For example, if the variation in V D is -1.5mV/°C, then \(\frac{\partial V_D}{\partial T} = 1.5mV/°C \) should be used in the equation above.

\(\frac{\partial V_{TC/VCM}}{\partial T} \) = Internal temperature compensation coefficient (equals 1.85mV/°C).

For applications that do not require temperature compensation,

For K V CM ≥ 2.5, leave TC/V CM unconnected.

For K V CM < 2.5, short TC/V CM to GND.
Selection of SET and FB Resistors
The MAX17691A/B uses the current in the feedback resistor (R_{FB}) placed between the FB pin and the LX node of the integrated nMOSFET to sense the reflected output voltage during the primary turn-off time. R_{SET} should be set to 10kΩ for a 100μA nominal current in R_{FB}.

When temperature compensation is not needed, the equation for the feedback resistor (R_{FB}) is:

\[
R_{FB} = R_{SET} \times \frac{V_{OUT} + V_D}{K}
\]

When temperature compensation is needed,

\[
R_{FB} = \frac{V_{OUT} + V_D}{K} \times \frac{1}{\left(\frac{1}{R_{SET} - \frac{R_{TC}}{V_{CM}}} \right)} \text{ for } K_{VCM} \geq 2.5
\]

\[
R_{FB} = \frac{V_{OUT} + V_D}{K} \times \frac{1}{\left(\frac{1}{R_{SET} - \frac{0.0825}{R_{TC}/V_{CM}}} \right)} \text{ for } K_{VCM} < 2.5
\]

In practice, the regulated output voltage can differ slightly from the desired output voltage due to secondary leakage-inductance voltage drop and differences in output-diode-voltage drop, and can require an R_{FB} adjustment.

Minimum Load Considerations
The MAX17691A/B samples the reflected output voltage information on the primary winding during the time when the integrated nMOSFET is turned-off, and energy stored during the on-time is being delivered to the output. It is therefore mandatory for the MAX17691A/B to switch the integrated nMOSFET to sample the reflected output voltage. Hence, a minimum packet of energy needs to be delivered to the output even during light-load conditions. This minimum deliverable energy creates a minimum load requirement on the output that depends on the minimum primary peak current. For a discontinuous-mode flyback converter, the minimum deliverable load power (P_{OUT_FSW}) at f_{SWDCM} is given by:

\[
P_{OUT_FSW} = \frac{1}{2} \times L_{MAG} \times I_{LX-PEAK-MIN}^2 \times f_{SWDCM} \times \eta
\]

At lower power levels less than P_{OUT_FSW}, the MAX17691A/B modulates the switching frequency between f_{SW}/4 and f_{SW} to regulate the output voltage. As the load decreases further, MAX17691A/B completely transitions to operation at f_{SW}/4 at a load (P_{OUT_FSW/4}) given by:

\[
P_{OUT_FSW/4} = \frac{1}{8} \times L_{MAG} \times I_{LX-PEAK-MIN}^2 \times f_{SWDCM} \times \eta
\]

As the load is decreased further, MAX17691A/B modulates the switching frequency between f_{SW}/4 and f_{SW}/16, until the device completely settles down at f_{SW}/16 at a load (P_{OUT_MIN_FSW/16}) given by:

\[
P_{OUT_MIN_FSW/16} = \frac{1}{32} \times L_{MAG} \times I_{LX-PEAK-MIN}^2 \times f_{SWDCM} \times \eta
\]

At this point, the MAX17691A/B has reached its minimum load condition and cannot regulate the output voltage without this minimum load connected to the output. In the absence of a minimum load, or a load less than the “minimum load,” the output voltage rises to higher values. To protect for this condition, a Zener diode of an appropriate breakdown voltage rating can be installed on the output. Care should be taken to ensure that the Zener breakdown voltage is outside the output voltage envelope in both steady-state and transient conditions. For MAX17691A/B, the guaranteed maximum for I_{LX-PEAK-MIN} is 0.58A.
Input Capacitor Selection

The input filter capacitor reduces peak currents drawn from the power source and reduces noise and voltage ripple on the input caused by the converter switching. Use low-ESR ceramic capacitors with high-ripple-current capability at the input. X7R capacitors are recommended in industrial applications for their temperature stability. Calculate the input capacitance using the following equations to limit the ripple voltage amplitude \(\Delta V_{IN} \) to less than 5% of the input voltage when operating at nominal input voltage,

\[
C_{IN} \geq \frac{I_{PEAKDCM} \times D_{VINMIN} \times (1 - D_{VINMIN}^2)^2}{2 \times f_{SWDCM} \times \Delta V_{IN}}
\]

where,
- \(C_{IN} \) = Input capacitance in Farads.
- \(D_{VINMIN} \) = Maximum duty cycle.
- \(\Delta V_{IN} \) = Target value of input voltage ripple in Volts.

In applications where the source is located distant from the device input, an electrolytic capacitor should be added in parallel to the ceramic capacitor to provide necessary damping for potential oscillations caused by the inductance of the longer input power path and input ceramic capacitor.

Output Capacitor Selection

X7R ceramic output capacitors are preferred in industrial applications due to their stability over temperature. It should be noted that dielectric materials used in ceramic capacitors exhibit capacitance loss due to DC bias levels and should be appropriately derated to ensure the required output capacitance is obtained in the application.

The MAX17691A implements internal loop compensation for the converter stability. Based on the internal compensation, the minimum output capacitance required for stable converter operation is given by:

\[
C_{OUTMIN} = \frac{9 \times V_{OUT} \times I_{OUT}}{\eta \times f_{C} \times I_{PEAKDCM} \times V_{OUT}^2}
\]

where,
- \(\eta = \) Target efficiency of the converter.
- \(C_{OUTMIN} \) = Minimum derated output capacitance in Farads.
- \(f_{C} = \) Target closed-loop bandwidth in Hz to be selected as 1/15 of the \(f_{SWDCM} \) and below 10kHz.

For the target output ripple, the output capacitance required is given by:

\[
C_{OUT(\text{Ripple})} \geq \frac{I_{OUT} \times (I_{PEAKDCM} - K \times I_{OUT})^2}{I_{PEAKDCM}^2 \times f_{SWDCM} \times V_{OUT\text{-RIPP}}^2}
\]

where,
- \(C_{OUT(\text{Ripple})} = \) Derated output capacitance in F.
- \(f_{SWDCM} = \) Switching frequency in Hz.
- \(V_{OUT\text{-RIPP}} = \) Target value of output voltage ripple in V.
The output capacitance (C_{OUTSTEP}) for a given load step (I_{STEP}), required output voltage deviation (ΔV_{OUT}) can be estimated as:

$$C_{\text{OUTSTEP}} = \frac{I_{\text{STEP}} \times t_{\text{RESPONSE}}}{2 \times \Delta V_{\text{OUT}}}$$

$$t_{\text{RESPONSE}} \approx \left(\frac{0.33}{f_C} + \frac{1}{f_{\text{SW}}}\right)$$

where,

I_{STEP} = Load step in Amperes.

t_{RESPONSE} = Response time of the converter.

ΔV_{OUT} = Allowable output voltage dip in Volts.

f_C = Target closed-loop bandwidth.

The output capacitance for MAX17691A should be selected to be the larger of C_{OUTMIN}, C_{OUT} (Ripple), or C_{OUTSTEP}. For stability reasons, the maximum allowed output capacitance for the MAX17691A is up to 3 x C_{OUTMIN}. If the required capacitance to meet the specifications exceeds 3 x C_{OUTMIN}, the MAX17691B with external loop compensation should be used. The output capacitance for MAX17691B should be selected to be the larger of C_{OUT} (Ripple) and C_{OUTSTEP}.

Loop Compensation (MAX17691B only)

While the MAX17691A provides ease of design and a low component count, the MAX17691B provides the designer with the flexibility of tailoring the loop compensation according to system needs.

The MAX17691B is compensated using an external frequency compensation network on the COMP pin as shown in Figure 8. The loop compensation values are calculated as follows,

$$R_Z = 1590 \times \left(\frac{f_C}{f_P}\right) \times \sqrt{\frac{V_{\text{OUT}} \times I_{\text{OUT}}}{2 \times L_{\text{MAGDCM}} \times f_{\text{SWDCM}}}}$$

$$C_Z = \frac{1}{2\pi R_Z \times f_P}$$

$$C_P = \frac{1}{\pi R_Z \times f_{\text{SWDCM}}}$$

where,

$$f_P = \frac{1}{\pi \times \frac{V_{\text{OUT}}}{I_{\text{OUT}}} \times C_{\text{OUT}}}$$

where,

C_{OUT} = Output capacitance in Farads selected in Output Capacitor Selection section.

f_C = Target closed loop bandwidth.

Figure 8. MAX17691B Loop Compensation Arrangement
Voltage Clamp Design
Ideally, the integrated nMOSFET experiences a drain-source voltage stress equal to the sum of the input voltage and reflected output voltage across the primary winding when it turns Off. In practice, voltage stress at L_X is the sum of the maximum operating input voltage (V_{INMAX}), the reflected output voltage and the voltage spike due to energy stored in the leakage inductance (V_{LKG}) of the transformer.

$$V_{LX} = V_{INMAX} + \frac{V_{OUT} + V_D}{K} + V_{LKG}$$

It is recommended to limit the leakage Inductance voltage spike to 1 to 1.5 times (K_S) the reflected voltage using a voltage clamp circuit across the transformer primary winding. Therefore, the clamp voltage across the primary winding during the off time is given by,

$$V_{CLAMP} = (1 + K_S) \times \left(\frac{V_{OUT} + V_D}{K}\right)$$

A simple Zener diode (ZD) clamp can be used as a voltage clamp circuit. Figure 9 shows the operating waveform of the Zener diode clamp.

Ideally, the Zener diode breakdown voltage should be selected same as the V_{CLAMP}. However, in practice, the Zener diode breakdown voltage should be 5V to 10V below the V_{CLAMP} to accommodate any additional voltage spike due to parasitic inductance in the clamp circuit path, such that the L_X voltage does not exceed 76V.

Select a schottky diode with a minimum reverse voltage rating (V_D) as a clamp diode (D):

$$V_D = V_{INMAX} + V_{ZENER}$$

The ZD clamp circuit only limits maximum voltage stress on the integrated nMOSFET. L_X node oscillations are still present due to the interaction between leakage inductance (L_{LK}) and the L_X node capacitance (C_{PAR}). The MAX17691A/B uses the L_X node voltage information to sample the output voltage and the earliest sampling instant is 300ns from the rising edge of the L_X node. Therefore, it is important to damp the L_X node ringing within 300ns.

For designs with ringing on the L_X node after 300ns, an additional RC snubber across the transformer primary winding is required. Use the following steps for designing an effective RC snubber:

1) Measure the ringing time period (t_1) for the oscillations on the L_X node immediately after the clamp period.

$$t_1 = \frac{2\pi \sqrt{L_{LK} \times C_{PAR}}}{t}$$

2) Add a test capacitance on the L_X node until the time period of this ringing is increased to 1.5 to 2 times of t_1. Start with a 100pF capacitor. With the added capacitance (C_D) measure the new ringing time period (t_2),

$$t_2 = \frac{2\pi \sqrt{L_{LK} \times (C_{PAR} + C_D)}}{t}$$

3) Use the following formula to calculate the L_X node capacitance (C_{PAR}),

$$C_{PAR} = \frac{t_2^2}{t_1^2} (\frac{t_2}{t_1} - 1)$$

4) Use the following formula to calculate the leakage inductance,

$$L_{LK} = \frac{t_1^2}{4 \times \pi^2 \times C_{PAR}}$$

5) Now, use the following equations to calculate the RC snubber values,

$$R_C = \frac{L_{LK}}{C_{PAR}}$$

$$1.5 \times C_{PAR} \leq C_C \leq 2 \times C_{PAR}$$
Figure 9. Voltage Clamp Circuit

Thermal Considerations

It should be ensured that the junction temperature of the devices does not exceed +125°C under all operating conditions specified for the power supply.

The total power loss in the devices can be calculated from the following equation:

\[P_{\text{LOSS}} = P_Q + P_{\text{COND}} + P_{\text{CAP}} \]

where,

- \(P_Q \) = Converter quiescent power loss.
- \(P_{\text{COND}} \) = Integrated nMOSFET conduction loss.
- \(P_{\text{CAP}} \) = Switching loss.

The converter quiescent power loss can be calculated using the following equation:

\[P_Q = V_Q \times I_Q \]

where,

- \(V_Q \) = Bias voltage when \(V_{CC} \) is overdriven, or \(V_Q = V_{IN} \), when \(V_{CC} \) is not overdriven.
- \(I_Q = V_{IN} \) supply current at no load.

The conduction loss in the integrated nMOSFET can be calculated as:

\[P_{\text{COND}} = I_{\text{PRIRMS}}^2 \times R_{\text{DSON}} \]

where,

- \(I_{\text{PRIRMS}} = I_{\text{PEAKDCM}} \times \frac{L_{\text{MAG}} \times f_{\text{PEAKDCM}} \times f_{\text{SWDCM}}}{3 \times V_{\text{INMIN}}} \)

The switching loss is estimated as:

\[P_{\text{CAP}} = 40 \times V_Q \times f_{\text{SWDCM}} \times \left[10 \times V_{CC} + 2 \times \left[V_{IN} + \frac{V_O + V_D}{K} \right] \right] \times 10^{-12} \]
For multilayer boards, the junction-ambient thermal resistance (θ_{JA}) for the MAX17691A/B is given by:

$$\theta_{JA} = 41^\circ C/W$$

The junction-temperature rise of the devices can be estimated at any given maximum ambient temperature (T_{AMAX}) from the following equation:

$$T_{JMAX} = T_{AMAX} + (\theta_{JA} \times P_{LOSS})$$

Design Example:
The following industrial specification is used to demonstrate the design calculations for the MAX17691A/B-based flyback converter,

- Input voltage range: 18V to 36V
- Output voltage: 5V
- Load current: 1.5A

1. Selection of Turns-Ratio
Plug-in the V_{INMAX}, V_{OUT} from the above specification and use $K_S = 1.2$, $V_D = 0.3V$ in the formula below to calculate the minimum require turns-ratio (K_{MIN}):

$$K_{MIN} = \frac{(1+K_S) \times (V_{OUT} + V_D)}{V_{INMAX}} = 0.29$$

For the present application, the K is chosen as 0.33.

Use the following equation to calculate the maximum duty cycle of the converter for the selected turns-ratio:

$$D_{MAX} = \frac{V_{OUT} + V_D}{V_{OUT} + V_D + K \times V_{INMIN}} = 0.47$$

Since $D_{MAX} < 0.66$, for the present design, $D_{VINMIN} = 0.47$.

2. Magnetizing Inductance and Switching Frequency
Use the below formula established earlier in this data sheet to calculate the minimum magnetizing inductance (L_{MAG}):

$$L_{MAG_TON} = \frac{210 \times 10^{-9}}{0.58} \times V_{INMAX} = 13\mu H$$

$$L_{MAG_TOFF} = 490 \times 10^{-9} \times \frac{V_{OUT} + V_D}{0.42xK} = 19\mu H$$

For the present application, the magnetizing inductance (L_{MAG}) is selected as 22μH allowing ±10% tolerance.

The maximum switching frequency (f_{SWDCM}) can be calculated from the following equation with a target efficiency of $\eta = 85\%$.

In this design the output power is increased by 10% for the charging output capacitor during soft-start time.

$$f_{SWDCM} = \frac{\left(\frac{D_{VINMIN} \times V_{INMIN}}{2 \times V_{OUT} \times I_{OUT} \times L_{MAG} \times (1 + TOL)}\right)^2 \times \eta}{2 \times 0.47 \times \frac{0.85}{2 \times 5 \times 1.65 \times 22 \times 10^{-6} \times (1 + 0.1)}} = 153kHz$$

Hence, the f_{SWDCM} is selected to be 150kHz.

The R_{RT} is calculated for the selected f_{SWDCM} is:

$$R_{RT} = \frac{10^7}{f_{SWDCM}} = 66.6k\Omega$$

A standard resistor of 66.5kΩ is selected for R_{RT}.

The transformer primary peak current value depends on the output power, L_{MAG} and the f_{SWDCM}. Use the below formula
to calculate the peak current:

\[I_{\text{PEAKDCM}} = \sqrt{\frac{2 \times V_{\text{OUT}} \times I_{\text{OUT}}}{I_{\text{MAG}} \times f_{\text{SWDCM}} \times \eta}} \]

\[I_{\text{PEAKDCM}} = \sqrt{\frac{2 \times 8.25 \times 10^{-6} \times 150000 \times 0.85}{11}} = 2.41 \text{A} \]

3. Selection of Secondary Diode

The output diode reverse-voltage rating must be higher than the sum of the output voltage and the reflected input voltage.

\[V_{\text{SEC RECT}} = 1.5 \times (K \times V_{\text{IN MAX}} + V_{\text{OUT}}) \]
\[V_{\text{SEC RECT}} = 1.5 \times (0.33 \times 36 + 5) = 25.5 \text{V} \]

The current rating of the secondary diode should be selected so that the power loss in the diode is small and the junction temperature is within limits. For the present design, SBR8U60P5 is selected.

4. \(R_{\text{TC/VCM}}\) Resistor Selection

By referring to Table 1, use the factor \(m_f = 58600\), and calculate the common mode voltage setting \(K_{\text{VCM}}\):

\[K_{\text{VCM}} = m_f \times \frac{V_{\text{OUT}} \times (1 - D_{\text{VINMIN}})}{f_{\text{SWDCM}}} \]
\[K_{\text{VCM}} = \frac{58600 \times 5 \times 0.53}{0.33 \times 150000} = 3.14 \]

With \(K_{\text{VCM}} \geq 2.5\), design \(R_{\text{TC/VCM}}\) based on following equation for an output diode temperature coefficient of -1.2mV/°C:

\[R_{\text{TC/VCM}} = 1.2 \times R_{\text{SET}} \times \left(0.55 + \frac{(V_{\text{OUT}} + V_D) \times (\frac{\delta V_{\text{TC/VCM}}}{\delta T})}{\delta V_D \delta T} \right) \]
\[R_{\text{TC/VCM}} = 1.2 \times 10000 \times \left(0.55 + \frac{(5+0.3) \times 1.85 \times 10^{-3}}{1.2 \times 10^{-3}} \right) = 105 \text{kΩ} \]

A standard resistor of 105kΩ is selected for \(R_{\text{TC/VCM}}\).

5. \(R_{\text{SET}}, R_{\text{FB}}\) Resistor Selection

With \(R_{\text{SET}} = 10\text{kΩ}\), \(R_{\text{TC/VCM}} = 105\text{kΩ}\), \(K_{\text{VCM}} \geq 2.5\) calculate the \(R_{\text{FB}}\) as below:

\[R_{\text{FB}} = \frac{V_{\text{OUT}} + V_D}{K} \times \left(1 - \frac{1}{R_{\text{SET}} - R_{\text{TC/VCM}}} \right) \]
\[R_{\text{FB}} = \frac{(5+0.3)}{0.33} \left(1 - \frac{1}{10000 - 105000} \right) = 171 \text{kΩ} \]

A standard resistor of 169kΩ is selected for \(R_{\text{FB}}\).

6. Input Capacitor Selection

The input capacitor is chosen to have 3% ripple at a nominal 24V input voltage.

\[C_{\text{IN}} \geq \frac{I_{\text{PEAKDCM}} \times D_{\text{VINMIN}} \times (1 - D_{\text{VINMIN}}) \times \Delta V_{\text{IN}}}{2 \times f_{\text{SWDCM}} \times \Delta V_{\text{IN}}} \]
\[C_{\text{IN}} \geq \frac{2.41 \times 0.47 \times 1 - 0.47}{2 \times 150000 \times 24 \times 0.03} = 3.1 \mu\text{F} \]
Select a 10µF, 50V, 1210 ceramic capacitor with a derated capacitance of 5.5µF at 24V.

7. Output Capacitor Selection

For a target bandwidth of 10kHz in MAX17691A,

\[C_{\text{OUT}} = \frac{9 \times V_{\text{OUT}} \times I_{\text{OUT}}}{\sqrt{\eta \times f_{\text{C}}} \times |I_{\text{PEAKDCM}}| \times V_{\text{OUT}}^2} = \frac{9 \times 5 \times 1.5}{0.85 \times 10000 \times 2.41 \times 5^2 \times 10^{-6}} = 122 \mu F \]

The output capacitance required for 1% output ripple is,

\[C_{\text{OUT(ripple)}} \geq \frac{I_{\text{OUT}} \times (|I_{\text{PEAKDCM}}| - K \times I_{\text{OUT}})^2}{I_{\text{PEAKDCM}} \times f_{\text{SWDCM}} \times V_{\text{OUT_RIPPL}}^2} \]

\[C_{\text{OUT(ripple)}} \geq \frac{1.5 \times (2.41 - 0.33 \times 1.5)^2}{2.41^2 \times 150000 \times 50 \times 10^{-3}} = 126 \mu F \]

Select two 100µF, 6.3V, 1210 ceramic capacitors (JMK325AC7107MM-P) with an effective derated capacitance of 120µF at 5V.

For MAX17691B, the output capacitor is selected to limit output-voltage deviation within 3% of the rated voltage for a 50% load step. With a target bandwidth of 10kHz,

\[t_{\text{RESPONSE}} \approx \left(\frac{0.33}{f_{\text{C}}} + \frac{1}{f_{\text{SW}}} \right) \]

\[t_{\text{RESPONSE}} \approx \left(\frac{0.33}{10000} + \frac{1}{150000} \right) = 40 \mu s \]

\[C_{\text{OUTSTEP}} = \frac{I_{\text{STEP}} \times t_{\text{RESPONSE}}}{2 \times \Delta V_{\text{OUT}}} \]

\[C_{\text{OUTSTEP}} = \frac{0.75 \times 40 \mu}{2 \times 5 \times 0.03} = 100 \mu F \]

Select two 100µF, 6.3V, 1210 ceramic capacitors (JMK325AC7107MM-P) with an effective derated capacitance of 120µF at 5V.

Hence, \(C_{\text{OUT}} = 120 \mu F \) for the MAX17691B design.

8. Loop Compensation for MAX17691B

The loop compensation values for MAX17691B are calculated as follows

\[R_Z = 1590 \times \left(\frac{f_{\text{C}}}{f_{\text{P}}} \right) \times \left(\frac{V_{\text{OUT}} \times I_{\text{OUT}}}{2 \times L_{\text{MAG}} \times f_{\text{SWDCM}}} \right) \]

Loadpole, \(f_p = \frac{1}{\frac{V_{\text{OUT}}}{I_{\text{OUT}}} \times C_{\text{OUT}}} \)

\[f_p = \frac{1}{\frac{5}{1.5} \times 120 \times 10^{-6}} = 796 \text{Hz} \]

\[R_Z = 1590 \times \left(\frac{8000}{796} \right) \times \left(\frac{5 \times 1.5}{2 \times 22 \times 10^{-6} \times 150000} \right) = 17k \]

A standard 17.4kΩ is selected.

\[C_Z = \frac{1}{2 \pi \times R_Z \times f_{p}} = 11.5 \text{nF} \]

\[C_p = \frac{1}{\pi \times R_Z \times f_{SW}} = 122 \text{pF} \]

The standard 10nF and 120pF are selected.
PCB Layout Guidelines

Careful PCB layout is critical to achieve clean and stable operation. Follow the below guidelines for good PCB layout:

1) Keep the loop area of paths carrying the pulsed currents as small as possible. In flyback design, the high frequency current path from the \(V_{IN} \) bypass capacitor through the primary-side winding and the internal MOSFET switch is a critical loop.

2) A \(V_{CC} \) bypass capacitor should be connected right across the \(V_{CC} \) and GND pins of the IC.

3) A bypass capacitor should be connected across to the \(V_{IN} \) and GND pins, and should be placed close to the IC.

4) The exposed pad of the IC should be directly connected to the GND pin of the IC.

5) When routing the circuitry around the IC, the analog small-signal ground and the power ground for switching currents must be kept separate. They should be connected together at a point where switching activity is at a minimum, typically the return terminal of the \(V_{CC} \) bypass capacitor.

6) The \(R_{FB} \) resistor trace length should be kept as small as possible.

7) To see the actual implementation of above guidelines, refer to the MAX17691A/B EV kit layouts, also available at the MAX17691A/B product page under the Design Resource tab.
Typical Application Circuits

24V to 5V, 1.5A MAX17691A No-Opto Flyback Application Circuit

![Circuit Diagram]

Figure 10. 24V to 5V, 1.5A MAX17691A No-Opto Flyback Application Circuit

24V to 5V, 1.5A MAX17691B No-Opto Flyback Application Circuit

![Circuit Diagram]

Figure 11. 24V to 5V, 1.5A MAX17691B No-Opto Flyback Application Circuit
Typical Application Circuits (continued)

24V to 5V, 1A MAX17691A No-Opto Synchronous Flyback Application Circuit

Figure 12. 24V to 5V, 1A MAX17691A No-Opto Synchronous Flyback Application Circuit

Ordering Information

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>TEMP RANGE</th>
<th>PIN PACKAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX17691AATC+</td>
<td>-40°C to +125°C</td>
<td>12 TDFN</td>
</tr>
<tr>
<td>MAX17691AATC+T</td>
<td>-40°C to +125°C</td>
<td>12 TDFN</td>
</tr>
<tr>
<td>MAX17691BATC+*</td>
<td>-40°C to +125°C</td>
<td>12 TDFN</td>
</tr>
<tr>
<td>MAX17691BATC+T*</td>
<td>-40°C to +125°C</td>
<td>12 TDFN</td>
</tr>
</tbody>
</table>

+ Denotes a lead(Pb)-free/RoHS-compliant package.

T Denotes tape-and reel.

*Future product—contact factory for availability.
Revision History

<table>
<thead>
<tr>
<th>REVISION NUMBER</th>
<th>REVISION DATE</th>
<th>DESCRIPTION</th>
<th>PAGES CHANGED</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4/20</td>
<td>Initial release</td>
<td>—</td>
</tr>
</tbody>
</table>

For pricing, delivery, and ordering information, please visit Maxim Integrated’s online storefront at https://www.maximintegrated.com/en/storefront/storefront.html.

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.