The MAX17220–MAX17225 is a family of ultra-low quiescent current boost (step-up) DC-DC converters with a 225mA/0.5A/1A peak inductor current limit and True Shutdown™. True Shutdown disconnects the output from the input with no forward or reverse current. The output voltage is selectable using a single standard 1% resistor. The 225mA (MAX17220), 500mA (MAX17222/MAX17223), and 1A (MAX17224/MAX17225) peak inductor current limits allow flexibility when choosing inductors. The MAX17220/MAX17222/MAX17224 versions have post-startup enable transient protection (ETP), allowing the output to remain regulated for input voltages down to 400mV, depending on load current. The MAX17220–MAX17225 offer ultra-low quiescent current, small total solution size, and high efficiency throughout the entire load range. The MAX17220–MAX17225 are ideal for battery applications where long battery life is a must.

**Applications**
- Optical Heart-Rate Monitoring (OHRM) LED Drivers
- Supercapacitor Backup for RTC/Alarm Buzzers
- Primary-Cell Portable Systems
- Tiny, Low-Power IoT Sensors
- Secondary-Cell Portable Systems
- Wearable Devices
- Battery-Powered Medical Equipment
- Low-Power Wireless Communication Products

**Ordering Information** appears at end of data sheet.

True Shutdown is a trademark of Maxim Integrated Products, Inc.
MAX17220–MAX17225

400mV to 5.5V Input, nanoPower Synchronous Boost Converter with True Shutdown

Absolute Maximum Ratings

- OUT, EN, IN to GND: -0.3V to +6V
- RSEL to GND: -0.3V to Lower of (V_{OUT} + 0.3V) or 6V
- LX RMS Current WLP: -1.6A_{RMS} to +1.6A_{RMS}
- LX RMS Current µDFN: -1A_{RMS} to +1A_{RMS}
- Continuous Power Dissipation (T_A = 70°C): 840mW
- µDFN (derate 4.5mW/°C above +70°C): 357.8mW
- Operating Temperature Range: -40°C to +85°C
- Junction Temperature: -40°C to +150°C
- Storage Temperature Range: -40°C to +150°C
- Soldering Temperature (reflow): +260°C

Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Package Information

µDFN

<table>
<thead>
<tr>
<th>PACKAGE CODE</th>
<th>L622+1C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outline Number</td>
<td>21-0164</td>
</tr>
<tr>
<td>Land Pattern Number</td>
<td>90-0004</td>
</tr>
</tbody>
</table>

Thermal Resistance, Four-Layer Board:
- Junction to Ambient (θ_{JA}): 223.6°C/W
- Junction to Case (θ_{JC}): 122°C/W

WLP

<table>
<thead>
<tr>
<th>PACKAGE CODE</th>
<th>N60E1+1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outline Number</td>
<td>21-100128</td>
</tr>
<tr>
<td>Land Pattern Number</td>
<td>Refer to Application Note 1891</td>
</tr>
</tbody>
</table>

Thermal Resistance, Four-Layer Board:
- Junction to Ambient (θ_{JA}): 95.15°C/W
- Junction to Case (θ_{JC}): N/A

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”, “#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.
### Electrical Characteristics

(V\textsubscript{IN} \text{=} V\textsubscript{EN} \text{=} 1.5V, V\textsubscript{OUT} \text{=} 3V, T\textsubscript{A} \text{=} -40°C to +85°C, typical values are at T\textsubscript{A} \text{=} +25°C, unless otherwise noted. (Note 1))

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum Input Voltage</td>
<td>V\textsubscript{IN_MIN}</td>
<td>Runs from output after startup, I\textsubscript{OUT} \text{=} 1mA</td>
<td>400</td>
<td>400</td>
<td>5.5</td>
<td>mV</td>
</tr>
<tr>
<td>Input Voltage Range</td>
<td>V\textsubscript{IN}</td>
<td>Guaranteed by LX Maximum On-Time</td>
<td>0.95</td>
<td>0.95</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td>Minimum Startup Input Voltage</td>
<td>V\textsubscript{IN_STARTUP}</td>
<td>R\textsubscript{L} \text{=} 3kΩ, Typical Operating Circuit, \ T\textsubscript{A} \text{=} 25°C</td>
<td>0.88</td>
<td>0.95</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td>Output Voltage Range</td>
<td>V\textsubscript{OUT}</td>
<td>See R\textsubscript{SEL} Selection table. For V\textsubscript{IN} \text{&lt;} V\textsubscript{OUT} target (Note 2)</td>
<td>1.8</td>
<td>5</td>
<td>5</td>
<td>V</td>
</tr>
<tr>
<td>Output Accuracy, LPM</td>
<td>ACC\textsubscript{LPM}</td>
<td>V\textsubscript{OUT} falling, when LX switching frequency is &gt; 1MHz (Note 3)</td>
<td>-1.5</td>
<td>+1.5</td>
<td>5</td>
<td>%</td>
</tr>
<tr>
<td>Output Accuracy, Ultra-Low-Power Mode</td>
<td>ACC\textsubscript{ULPM}</td>
<td>V\textsubscript{OUT} falling, when LX switching frequency is &gt; 1kHz (Note 4)</td>
<td>1</td>
<td>2.5</td>
<td>4</td>
<td>%</td>
</tr>
<tr>
<td>Quiescent Supply Current Into OUT</td>
<td>I\textsubscript{Q_OUT}</td>
<td>MAX17220/2/4 EN = open after startup, MAX17223/5 EN = V\textsubscript{IN}, not switching, R\textsubscript{SEL} OPEN, V\textsubscript{OUT} = 104% of 1.8V, \ T\textsubscript{A} \text{=} 25°C.</td>
<td>300</td>
<td>600</td>
<td>600</td>
<td>nA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MAX17220/2/4 EN = open after startup, MAX17223/5 EN = V\textsubscript{IN}, not switching, R\textsubscript{SEL} OPEN, V\textsubscript{OUT} = 104% of 1.8V, \ T\textsubscript{A} \text{=} 85°C.</td>
<td>470</td>
<td>900</td>
<td>900</td>
<td>nA</td>
</tr>
<tr>
<td>Quiescent Supply Current Into IN</td>
<td>I\textsubscript{Q_IN}</td>
<td>\ T\textsubscript{A} \text{=} 25°C</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>nA</td>
</tr>
<tr>
<td>Total Quiescent Supply Current into IN LX EN</td>
<td>I\textsubscript{Q_IN_TOTAL}</td>
<td>MAX17220/2/4 EN = Open after startup. MAX17223/5 EN = V\textsubscript{IN}, not switching, V\textsubscript{OUT} = 104% of V\textsubscript{OUT} target, total current includes IN, LX, and EN, \ T\textsubscript{A} \text{=} 25°C</td>
<td>0.5</td>
<td>100</td>
<td>100</td>
<td>nA</td>
</tr>
<tr>
<td>Shutdown Current Into IN</td>
<td>I\textsubscript{SD_IN}</td>
<td>MAX17220/2/3/4/5, R\textsubscript{L} \text{=} 3kΩ, V\textsubscript{OUT} = V\textsubscript{EN} = 0V, \ T\textsubscript{A} \text{=} 25°C</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>nA</td>
</tr>
<tr>
<td>Total Shutdown Current into IN LX</td>
<td>I\textsubscript{SD_TOTAL}</td>
<td>MAX17220/2/3/4/5, R\textsubscript{L} \text{=} 3kΩ, V\textsubscript{EN} = V\textsubscript{IN} = V\textsubscript{LX} = 3V, includes LX and IN leakage, \ T\textsubscript{A} \text{=} 25°C</td>
<td>0.5</td>
<td>100</td>
<td>100</td>
<td>nA</td>
</tr>
<tr>
<td>Inductor Peak Current Limit</td>
<td>I\textsubscript{PEAK}</td>
<td>(Note 5)</td>
<td>MAX17220</td>
<td>180</td>
<td>225</td>
<td>270</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MAX17222/3</td>
<td>0.4</td>
<td>0.5</td>
<td>0.575</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MAX17224/5</td>
<td>0.8</td>
<td>1</td>
<td>1.2</td>
<td>%</td>
</tr>
<tr>
<td>LX Maximum Duty Cycle</td>
<td>DC</td>
<td>(Note 6)</td>
<td>70</td>
<td>75</td>
<td>75</td>
<td>%</td>
</tr>
<tr>
<td>LX Maximum On-Time</td>
<td>t\textsubscript{ON}</td>
<td>(Note 6)</td>
<td>V\textsubscript{OUT} = 1.8V</td>
<td>280</td>
<td>365</td>
<td>450</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V\textsubscript{OUT} = 3V</td>
<td>270</td>
<td>300</td>
<td>330</td>
<td>ns</td>
</tr>
<tr>
<td>LX Minimum Off-Time</td>
<td>t\textsubscript{OFF}</td>
<td>(Note 6)</td>
<td>V\textsubscript{OUT} = 1.8V</td>
<td>90</td>
<td>120</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V\textsubscript{OUT} = 3V</td>
<td>80</td>
<td>100</td>
<td>120</td>
<td>ns</td>
</tr>
<tr>
<td>LX Leakage Current</td>
<td>I\textsubscript{LX_LEAK}</td>
<td>V\textsubscript{OUT} = V\textsubscript{EN} = 0V</td>
<td>V\textsubscript{LX} \text{=} 1.5V, \ T\textsubscript{A} \text{=} 25°C</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V\textsubscript{LX} \text{=} 5.5V, \ T\textsubscript{A} \text{=} 85°C</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>nA</td>
</tr>
</tbody>
</table>
Electrical Characteristics (continued)

\( V_{IN} = V_{EN} = 1.5V, \quad V_{OUT} = 3V, \quad T_A = -40^\circ C \) to \( +85^\circ C \), typical values are at \( T_A = +25^\circ C \), unless otherwise noted. (Note 1)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-Channel On-Resistance</td>
<td>( R_{DS(ON)} )</td>
<td>( V_{OUT} = 3.3V )</td>
<td>MAX17220</td>
<td>124</td>
<td>270</td>
<td>mΩ</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MAX17222/3</td>
<td>62</td>
<td>135</td>
<td>mΩ</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MAX17224/5</td>
<td>31</td>
<td>70</td>
<td>mΩ</td>
</tr>
<tr>
<td>P-Channel On-Resistance</td>
<td>( R_{DS(ON)} )</td>
<td>( V_{OUT} = 3.3V )</td>
<td>MAX17220</td>
<td>300</td>
<td>600</td>
<td>mΩ</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MAX17222/3</td>
<td>150</td>
<td>300</td>
<td>mΩ</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MAX17224/5</td>
<td>75</td>
<td>150</td>
<td>mΩ</td>
</tr>
<tr>
<td>Synchronous Rectifier Zero-Crossing as Percent of Peak Current Limit</td>
<td>( I_{ZX} )</td>
<td>( V_{OUT} = 3.3V ) (Note 7)</td>
<td>2.5</td>
<td>5</td>
<td>7.5</td>
<td>%</td>
</tr>
<tr>
<td>Enable Voltage Threshold</td>
<td>( V_{IL} )</td>
<td>When LX switching stops, EN falling</td>
<td>300</td>
<td>500</td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td>( V_{IH} )</td>
<td>EN rising</td>
<td>600</td>
<td>850</td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>Enable Input Leakage</td>
<td>( I_{EN_LK} )</td>
<td>MAX17223/5, ( V_{EN} = 5.5V, T_A = 25^\circ C )</td>
<td>0.1</td>
<td></td>
<td></td>
<td>nA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MAX17220/2/4, ( V_{EN} = 0V, T_A = 25^\circ C )</td>
<td>0.1</td>
<td></td>
<td></td>
<td>nA</td>
</tr>
<tr>
<td>Enable Input Impedance</td>
<td></td>
<td>MAX17220/2/4</td>
<td>100</td>
<td>200</td>
<td></td>
<td>kΩ</td>
</tr>
<tr>
<td>Required Select Resistor Accuracy</td>
<td>( R_{SEL} )</td>
<td>Use the nearest ±1% resistor from ( R_{SEL} ) Selection Table</td>
<td>-1</td>
<td>+1</td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>Select Resistor Detection Time</td>
<td>( t_{RSEL} )</td>
<td>( V_{OUT} = 1.8V, C_{RSEL} &lt; 2pF ) (Note 8)</td>
<td>360</td>
<td>600</td>
<td>1320</td>
<td>µs</td>
</tr>
</tbody>
</table>

**Note 1:** Limits are 100% production tested at \( T_A = +25^\circ C \). Limits over the operating temperature range are guaranteed through correlation using statistical quality control (SQC) methods.

**Note 2:** Guaranteed by the Required Select Resistor Accuracy parameter.

**Note 3:** Output Accuracy, Low Power mode is the regulation accuracy window expected when \( I_{OUT} > I_{OUT\_TRANSITION} \). See **PFM Control Scheme** and \( V_{OUT\_ERROR} \) vs \( I_{LOAD} \) TOC for more details. This accuracy does not include load, line, or ripple.

**Note 4:** Output Accuracy, Ultra-Low Power mode is the regulation accuracy window expected when \( I_{OUT} < I_{OUT\_TRANSITION} \). See **PFM Control Scheme** and \( V_{OUT\_ERROR} \) vs \( I_{LOAD} \) TOC for more details. This accuracy does not include load, line, or ripple.

**Note 5:** This is a static measurement. See \( I_{LIM} \) vs \( V_{IN} \) TOC. The actual peak current limit depends upon \( V_{IN} \) and \( L \) due to propagation delays.

**Note 6:** Guaranteed by measuring LX frequency and duty cycle.

**Note 7:** This is a static measurement.

**Note 8:** This is the time required to determine \( R_{SEL} \) value. This time adds to the startup time. See **Output Voltage Selection**.
Typical Operating Characteristics
(MAX1722ELT+, IN = 1.5V, OUT = 3V, L = 2.2μH Coilcraft XFL4020-222, CIN = 10μF, COUT = 10μF, TA = +25°C, unless otherwise noted.)
Typical Operating Characteristics (continued)

(MAX17222ELT+, IN = 1.5V, OUT = 3V, L = 2.2μH Coilcraft XFL4020-222, CIN = 10μF, COUT = 10μF, TA = +25°C, unless otherwise noted.)
Typical Operating Characteristics (continued)
(MAX17222ELT+, \(I_{\text{IN}} = 1.5\text{V}, \text{OUT} = 3\text{V}, L = 2.2\mu\text{H} \text{ Coilcraft XFL4020-222, } C_{IN} = 10\mu\text{F}, C_{OUT} = 10\mu\text{F, } T_A = +25^\circ\text{C, unless otherwise noted.})

HEAVY LOAD SWITCHING WAVEFORM

LIGHT-LOAD SWITCHING WAVEFORM

ULTRA-LOW-POWER MODE SWITCHING WAVEFORM

LINE TRANSIENT

MAX17220+ INDUCTOR CURRENT LIMIT vs. INPUT VOLTAGE
MAX17220–MAX17225 400mV to 5.5V Input, nanoPower Synchronous Boost Converter with True Shutdown

**Bump Configuration**

![Bump Configuration Diagram]

**Bump Description**

<table>
<thead>
<tr>
<th>PIN</th>
<th>NAME</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 WLP</td>
<td>µDFN</td>
<td>OUT</td>
</tr>
<tr>
<td>A1</td>
<td>1</td>
<td>OUT</td>
</tr>
<tr>
<td>A2</td>
<td>2</td>
<td>LX</td>
</tr>
<tr>
<td>A3</td>
<td>3</td>
<td>GND</td>
</tr>
<tr>
<td>B1</td>
<td>6</td>
<td>EN</td>
</tr>
<tr>
<td>B2</td>
<td>5</td>
<td>IN</td>
</tr>
<tr>
<td>B3</td>
<td>4</td>
<td>SEL</td>
</tr>
</tbody>
</table>

Output Pin. Connect a 10µF X5R ceramic capacitor (minimum 2µF capacitance) to ground.

Switching Node Pin. Connect the inductor from IN to LX.

Active-High Enable Input. See Supply Current section for recommended connections.

Input Pin. Connect a 10µF X5R ceramic capacitor (minimum 2µF capacitance) to ground. Depending on the application requirements, more capacitance may be needed (i.e., BLE).

Output Voltage Select Pin. Connect a resistor from SEL to GND based on the desired output voltage. See RSEL Selection table.
MAX17220–MAX17225
400mV to 5.5V Input, nanoPower Synchronous Boost Converter with True Shutdown

Functional Diagrams

Functional Diagram of MAX17220/2/3/4/5

- 400mV to 5.5V Input
- nanoPower Synchronous Boost Converter
- True Shutdown

Key Components:
- IN, CIN 10µF
- OUT, COUT 10µF
- LX
- MAX17220/2/3/4/5
- STARTUP
- TRUE SHUTDOWN
- CURRENT SENSE
- MODULATOR
- REFERENCE
- OPTIONAL ENABLE PIN
- TRANSIENT PROTECTION
- OUTPUT VOLTAGE SELECTOR
- EN
- GND
- SEL, RSEL

www.maximintegrated.com
Detailed Description
The MAX17220/2/3/4/5 compact, high-efficiency, step-up DC-DC converters have ultra-low quiescent current, are guaranteed to start up with voltages as low as 0.95V, and operate with an input voltage down to 400mV, depending on load current. True Shutdown disconnects the input from the output, saving precious battery life. Every detail of the MAX17220/2/3/4/5 was carefully chosen to allow for the lowest power and smallest solution size. Such details as switching frequencies up to 2.5MHz, tiny package options, a single-output setting resistor, 300ns fixed turn-on time, as well as three current limit options, allow the user to minimize the total solution size.

Supply Current
True Shutdown Current
The total system shutdown current \( I_{SD\_TOTAL\_SYSTEM} \) is made up of the MAX17220/2/3/4/5’s total shutdown current \( I_{SD\_TOTAL} \) and the current through an external pullup resistor, as shown in Figure 1. \( I_{SD\_TOTAL} \) is listed in the Electrical Characteristics table and is typically 0.5nA. It is important to note that \( I_{SD\_TOTAL} \) includes LX and IN leakage currents. (See the Shutdown Supply Current vs. Temperature graph in the Typical Operating Characteristics section.)

\[
I_{SD\_TOTAL}\_SYSTEM = I_{SD\_TOTAL} + \frac{V_{IN}}{R_{PULLUP}}
\]

\[
= 0.5nA + \frac{1.5}{33M\Omega} = 45.9nA, \text{ (Figure 1)}
\]

Figure 2 shows a typical connection of the MAX17223/5 to a push-pull microcontroller GPIO. \( I_{SD\_TOTAL\_SYSTEM} \) current can be calculated using the formula below. For example, a MAX17223/5 with EN connected to a push-pull microcontroller GPIO, \( V_{IN} = 1.5V \), \( V_{OUT} = 3V \), and a 33M\( \Omega \) pullup resistor, \( I_{SD\_TOTAL\_SYSTEM} \) current is 0.5nA.

\[
I_{SD\_TOTAL}\_SYSTEM = I_{SD\_TOTAL} = 0.5nA
\]

(Figure 2, Figure 3)

Figure 3 shows a typical connection of the MAX17220/2/4 with a push-button switch to minimize the \( I_{SD\_TOTAL\_SYSTEM} \) current. \( I_{SD\_TOTAL\_SYSTEM} \) current can be calculated using the formula above. For example, a MAX17220/2/4 with EN connected as shown in Figure 3, with \( V_{IN} = 1.5V \) and \( V_{OUT} = 3V \), the \( I_{SD\_TOTAL\_SYSTEM} \) current is 0.5nA.
Enable Transient Protection (ETP) Current

The MAX17220/2/4 have internal circuitry that helps protect against accidental shutdown by transients on the EN pin. Once the part is started up, these parts allow the voltage at IN to drop as low as 400mV while still keeping the part enabled, depending on the load current. This feature comes at the cost of slightly higher supply current that is dependent on the pullup resistor resistance.

The extra supply current for this protection option can be calculated by the equation below. For example, for the MAX17220/2/4 used in the Figure 1 connection, a \( V_{IN} = 1.5V \), \( V_{OUT} = 3V \), a 33MΩ pullup resistor and an 85% efficiency, the IQ_ETP is expected to be 61.3nA.

\[
IQ_{ETP} = \frac{(V_{OUT} - V_{IN})}{(R_{PULLUP} + 100k)} \times \left( \frac{1}{\eta} \times \frac{V_{OUT}}{V_{IN}} - 1 \right)
\]

(Figure 1)

Use the efficiency \( \eta \) from the flat portion of the efficiency typical operating curves while the device is in ultra-low-power mode (ULPM). Do not use the efficiency for your actual load current. To calculate the IQ_ETP for the MAX17220/2/4, see the Enable Transient Protection (ETP) Current section. If you are using the versions of the part without enable input transient protection (using MAX17223/5) or if you are using any part version and the electrical path from the EN pin is opened after startup, then the IQ_ETP current will be zero. For example, for the MAX17223/5, a \( V_{IN} = 1.5V \), \( V_{OUT} = 3V \), and an 85% efficiency, the IQ_TOTAL_SYSTEM is 706.4nA.

\[
IQ_{TOTAL\_SYSTEM} = IQ_{IN\_TOTAL} + IQ_{OUT} + IQ_{ETP}
\]

(MAX17223/5)

\[
IQ_{TOTAL\_SYSTEM} = 0.5nA + \frac{300nA}{0.85 \times \frac{1.5V}{3V}}, \quad 706.4nA
\]

(MAX17223/5)

Quiescent Current

The MAX17220/2/3/4/5 has ultra-low quiescent current and was designed to operate at low input voltages by bootstrapping itself from its output by drawing current from the output. Use the equation below to calculate the total system quiescent current IQ_TOTAL_SYSTEM using the efficiency \( \eta \) from the flat portion of the efficiency graph in the Typical Operating Characteristics section while the device is in ULPM. See the PFM control scheme section for more info on ULPM. Do not use the efficiency for your actual load current.

\[
IQ_{TOTAL\_SYSTEM} = IQ_{IN\_TOTAL} + IQ_{OUT} + IQ_{ETP}
\]

(MAX17220/2/4)

\[
IQ_{TOTAL\_SYSTEM} = 0.5nA + \frac{300nA}{0.85 \times \frac{1.5V}{3V}} + 61.3nA, \quad 767.7nA
\]

(MAX17220/2/4)

PFM Control Scheme

The MAX17220/2/3/4/5 utilizes a fixed on-time, current-limited, pulse-frequency-modulation (PFM) control scheme that allows ultra-low quiescent current and high efficiency over a wide output current range. The inductor current is limited by the 0.225A/0.5A/1A N-channel current limit or by the 300ns switch maximum on-time. During each on cycle, either the maximum on-time or the maximum current limit is reached before the off-time of the cycle begins. The MAX17220/2/3/4/5's PFM control scheme allows for both continuous conduction mode (CCM) or discontinuous conduction mode (DCM). When the error comparator senses that the output has fallen below the regulation threshold, another cycle begins. See the MAX17220/2/3/4/5 simplified functional diagram.
The MAX17220/2/3/4/5 automatically switches between the ULPM, low-power mode (LPM) and high-power mode (HPM), depending on the load current. Figure 4 and Figure 5 show typical waveforms while in each mode. The output voltage, by design, is biased 2.5% higher while in ULPM so that it can more easily weather a future large load transient. ULPM is used when the system is in standby or an ultra-low-power state. LPM and HPM are useful for sensitive sensor measurements or during wireless communications for medium output currents and large output currents respectively. The user can calculate the value of the load current where ULPM transi-

Figure 4. ULPM, LPM, and HPM Waveforms (Part 1).

Figure 5. ULPM, LPM, and HPM Waveforms (Part 2).
tions to LPM using the equation below. For example, for $V_{IN} = 1.5V$, $V_{OUT} = 3V$ and $L = 2.2\mu H$, the UPLM to LPM transition current happens at approximately $1.49mA$ and a no-load frequency of $11.5Hz$. The MAX17220/2/3/4/5 enters HPM when the inductor current transitions from DCM to CCM.

$$I_{OUT\_TRANSITION} = \frac{300ns^2}{2L} \times \left( \frac{V_{IN}}{V_{OUT} - 1} \right) \times \left( \frac{\eta}{17.5\mu s} \right)$$

$$= \frac{300ns^2}{2 \times 2.2\mu H} \times \left( \frac{1.5V}{3V - 1.5V} \right) \times \left( \frac{0.85}{17.5\mu s} \right) = 1.49mA$$

The minimum switching frequency can be calculated by this equation below:

$$f_{SW\,(MIN)} = \frac{1}{17.5\mu s} \times \frac{IQ}{I_{OUT\_TRANSITION}}$$

$$f_{SW\,(MIN)} = \frac{1}{17.5\mu s} \times \frac{300nA}{1.49mA} = 11.5Hz$$

**Operation with $V_{IN} > V_{OUT}$**

If the input voltage ($V_{IN}$) is greater than the output voltage ($V_{OUT}$) by a diode drop ($V_{DIODE}$ varies from ~0.2V at light load to ~0.7V at heavy load), then the output voltage is clamped to a diode drop below the input voltage (i.e., $V_{OUT} = V_{IN} - V_{DIODE}$).

When the input voltage is closer to the output voltage target (i.e., $V_{OUT\, target} + V_{DIODE} > V_{IN} > V_{OUT\, target}$) the MAX17220–MAX17225 operate like a buck converter.

**Design Procedure**

**Output Voltage Selection**

The MAX17220/2/3/4/5 has a unique single-resistor output selection method known as RSEL, as shown in Figure 6. At startup, the MAX17220/2/3/4/5 uses up to $200\mu A$ only during the select resistor detection time, typically for $600\mu s$, to read the RSEL value. RSEL has many benefits, which include lower cost and smaller size, since only one resistor is needed versus the two resistors needed in typical feedback connections. Another benefit is RSEL allows our customers to stock just one part in their inventory system and use it in multiple projects with different output voltages just by changing a single standard 1% resistor. Lastly, RSEL eliminates wasting current continuously through feedback resistors for ultra low power battery operated products. Select the RSEL resistor value by choosing the desired output voltage in the RSEL Selection Table.
**Inductor Selection**

A 2.2µH inductor value provides the best size and efficiency tradeoff in most applications. Smaller inductance values typically allow for the smallest physical size and larger inductance values allow for more output current assuming continuous conduction mode (CCM) is achieved. Most applications are expected to use a 2.2µH, as shown in the example circuits. For low input voltages, 1µH will work best. If one of the example application circuits do not provide enough output current, use the equations below to calculate a larger inductance value that meets the output current requirements, assuming it is possible to achieve. For the equations below, choose an $I_{IN}$ between $0.9 \times I_{LIM}$ and half $I_{LIM}$. It is not recommended to use an inductor value smaller than 1µH or larger than 4.7µH. See the Typical Operating Characteristics section for choosing the value of efficiency $\eta$ using the closest conditions for your application. An example calculation has been provided for the MAX17222 that has an $I_{LIM} = 500mA$, a $V_{IN} (\text{min}) = 1.8V$, a $V_{OUT} = 3V$, and a desired $I_{OUT}$ of 205mA, which is beyond one of the 2.2µH example circuits. The result shows that the inductor value can be changed to 3.3µH to achieve a little more output current.

$$I_{IN} = \frac{V_{OUT} \times I_{OUT}}{\eta \times V_{IN}} = \frac{3V \times 205mA}{0.85 \times 1.8V} = 402mA;$$

$$I_{LIM} < I_{IN} < 0.9 \times I_{LIM}$$

$$\Delta I = (I_{LIM} - I_{IN}) \times 2 = (500mA - 402mA) \times 2 = 196mA$$

$$L_{MIN} = \frac{V_{IN} \times I_{ON(MAX)}}{\Delta I} = \frac{1.8V \times 300ns}{196mA} = 2.76\mu H$$

$$= > 3.3\mu H \text{ closest standard value}$$

**Capacitor Selection**

Input capacitors reduce current peaks from the battery and increase efficiency. For the input capacitor, choose a ceramic capacitor because they have the lowest equivalent series resistance (ESR), smallest size, and lowest cost. Choose an acceptable dielectric such as X5R or X7R. Other capacitor types can be used as well but will have larger ESR. The biggest downside of ceramic capacitors is their capacitance drop with higher DC bias and because of this at minimum a standard 10µF ceramic capacitor is recommended at the input for most applications. The minimum recommended capacitance (not capacitor) at the input is 2µF for most applications. For applications that use batteries that have a high source impedance greater than 1Ω, more capacitance may be needed. A good starting point is to use the same capacitance value at the input as for the output.

### Capacitor Selection Table

<table>
<thead>
<tr>
<th>VOUT (V)</th>
<th>STD RES 1% (kΩ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.8</td>
<td>OPEN</td>
</tr>
<tr>
<td>1.9</td>
<td>909</td>
</tr>
<tr>
<td>2.0</td>
<td>768</td>
</tr>
<tr>
<td>2.1</td>
<td>634</td>
</tr>
<tr>
<td>2.2</td>
<td>536</td>
</tr>
<tr>
<td>2.3</td>
<td>452</td>
</tr>
<tr>
<td>2.4</td>
<td>383</td>
</tr>
<tr>
<td>2.5</td>
<td>324</td>
</tr>
<tr>
<td>2.6</td>
<td>267</td>
</tr>
<tr>
<td>2.7</td>
<td>226</td>
</tr>
<tr>
<td>2.8</td>
<td>191</td>
</tr>
<tr>
<td>2.9</td>
<td>162</td>
</tr>
<tr>
<td>3.0</td>
<td>133</td>
</tr>
<tr>
<td>3.1</td>
<td>113</td>
</tr>
<tr>
<td>3.2</td>
<td>95.3</td>
</tr>
<tr>
<td>3.3</td>
<td>80.6</td>
</tr>
<tr>
<td>3.4</td>
<td>66.5</td>
</tr>
<tr>
<td>3.5</td>
<td>56.2</td>
</tr>
<tr>
<td>3.6</td>
<td>47.5</td>
</tr>
<tr>
<td>3.7</td>
<td>40.2</td>
</tr>
<tr>
<td>3.8</td>
<td>34</td>
</tr>
<tr>
<td>3.9</td>
<td>28</td>
</tr>
<tr>
<td>4.0</td>
<td>23.7</td>
</tr>
<tr>
<td>4.1</td>
<td>20</td>
</tr>
<tr>
<td>4.2</td>
<td>16.9</td>
</tr>
<tr>
<td>4.3</td>
<td>14</td>
</tr>
<tr>
<td>4.4</td>
<td>11.8</td>
</tr>
<tr>
<td>4.5</td>
<td>10</td>
</tr>
<tr>
<td>4.6</td>
<td>8.45</td>
</tr>
<tr>
<td>4.7</td>
<td>7.15</td>
</tr>
<tr>
<td>4.8</td>
<td>5.9</td>
</tr>
<tr>
<td>4.9</td>
<td>4.99</td>
</tr>
<tr>
<td>5.0</td>
<td>SHORT</td>
</tr>
</tbody>
</table>
The minimum output capacitance that ensures stability is 2µF. At minimum a standard 10µF X5R (or X7R) ceramic capacitor is recommended for most applications. Due to DC bias effects the actual capacitance can be 80% lower than the nominal capacitor value. The output ripple can be calculated with the equation below. For example, For the MAX17220/2/3/4/5 with a $V_{IN} = 1.5V$, $V_{OUT} = 3V$, and an effective capacitance of 5µF, a capacitor ESR of 4mΩ, the expected ripple is 7mV.

$$V_{ripples} = I_L \times ESR_{C_{OUT}} \times \frac{1}{C_{OUT}(Effective)}$$

Where,

$$I_L = \frac{V_{IN}}{L} \times \frac{t_{ON}}{2.2 \mu s} = \frac{1.5V}{2.2 \mu s} \times 300ns = 204mA$$

$$t_{OFF} = t_{ON} \times \frac{V_{IN}}{V_{OUT} - V_{IN}} = 300ns \times \frac{1.5V}{3V - 1.5V} = 300ns$$

$$C_{OUT}(Effective) = 5\mu F, \ ESR_{C_{OUT}} \ for \ Murata \ GRM155R61A106ME44 \ is \ 4m\Omega \ from \ 200kHz \ to \ 2MHz$$

$$V_{ripples} = 204mA \times 4m\Omega + \frac{1}{2} \times 204mA \times 300ns \times \frac{1}{5\mu F} = 7mV$$

PCB Layout Guidelines

Careful PC board layout is especially important in a nano-current DC-DC converters. In general, minimize trace lengths to reduce parasitic capacitance, parasitic resistance and radiated noise. Remember that every square of 1oz copper will result in 0.5mΩ of parasitic resistance. The connection from the bottom of the output capacitor and the ground pin of the device must be extremely short as should be that of the input capacitor. Keep the main power path from IN, LX, OUT, and GND as tight and short as possible. Minimize the surface area used for LX since this is the noisiest node. Lastly, the trace used for RSEL should not be too long nor produce a capacitance of more than a few pico Farads.
Applications Information

Primary Cell Bluetooth Low Energy (BLE) Temperature Sensor Wearable

Figure 7. MAX1722x/MAX30205 Temperature Sensor Wearable Solution

ARM is a registered trademark and registered service mark and Cortex is a registered trademark of ARM Limited.
Primary Cell Bluetooth Low Energy (BLE) Optical Heart Rate Monitoring (OHRM) Sensor Wearable

Figure 8. MAX1722x/MAX30110/MAX30101/MAX30102 Optical Heart Rate Monitor (OHRM) Sensor Wearable Solution for Primary Cells.
Secondary Rechargable Lithium Cell Bluetooth Low Energy (BLE) Optical Heart Rate Monitor (OHRM) Sensor Wearable

Figure 9. MAX1722x/MAX30110/MAX30101/MAX30102 Optical Heart Rate Monitor (OHRM) Sensor Wearable Solution for Secondary Cells.

Supercap Backup Solution for Real-Time Clock (RTC) Preservation

Figure 10. MAX1722x/MAX14575/DS1341 RTC Backup Solution.
Supercap Backup Solution to Maintain Uniform Sound for Alarm Beeper Buzzers

Figure 11. MAX1722x/MAX14575 Solution for Alarm Beeper Buzzers.

Zero Reverse Current in True Shutdown for Multisource Applications

Figure 12. MAX1722x Has Zero Reverse Current in True Shutdown.
Typical Application Circuits

Smallest Solution Size—0603 Inductor—MAX17222/MAX17223 500mA I_LIM (Part 1)

Smallest Solution Size—0603 Inductor—MAX17222/MAX17223 500mA I_LIM (Part 2)
Typical Application Circuits (continued)

**Highest Efficiency Solution—4mm x 4mm Inductor—MAX17222/MAX17223 500mA I\text{\textsubscript{LIM}} (Part 1)**

### IN 0.8V TO 3V
- L1: 1µH
- C\text{\textsubscript{IN}}: 10µF
- C\text{\textsubscript{OUT}}: 10µF
- L\text{\textsubscript{SEL}}
- GND
- STARTUP

### OUT 3.3V, 18mA
- EN
- C\text{\textsubscript{SEL}}
- GND

#### MAX17222
- 3.3V OUTPUT R\text{\textsubscript{SEL}} 80.6K ±1%

#### MAX17223
- 3V OUTPUT R\text{\textsubscript{SEL}} 133K ±1%

### IN 1.8V TO 3V
- L1: 1µH
- C\text{\textsubscript{IN}}: 10µF
- C\text{\textsubscript{OUT}}: 10µF
- L\text{\textsubscript{SEL}}
- GND
- STARTUP

### OUT 1.8V, 120mA
- EN
- C\text{\textsubscript{SEL}}
- GND

#### MAX17222
- 2V OUTPUT R\text{\textsubscript{SEL}} 768K ±1%
- 1.8V OUTPUT R\text{\textsubscript{SEL}} OPEN (NO RESISTOR)

#### MAX17223
- 3.3V OUTPUT R\text{\textsubscript{SEL}} SHORT TO GND (NO RESISTOR)

### OUT 5V, 185mA
- EN
- C\text{\textsubscript{SEL}}
- GND

#### MAX17222
- 3.3V*, 285mA

#### MAX17223

---

**Highest Efficiency Solution—4 x 4mm Inductor—MAX17222/MAX17223 500mA I\text{\textsubscript{LIM}} (Part 2)**

### IN 0.8V TO 1.8V
- L1: 2.2µH
- C\text{\textsubscript{IN}}: 10µF
- C\text{\textsubscript{OUT}}: 10µF
- L\text{\textsubscript{SEL}}
- GND
- STARTUP

### OUT 2V, 115mA
- EN
- C\text{\textsubscript{SEL}}
- GND

#### MAX17222
- 1.8V OUTPUT R\text{\textsubscript{SEL}} 80.6K ±1%

#### MAX17223

### IN 2.7V TO 4.2V
- L1: 2.2µH
- C\text{\textsubscript{IN}}: 10µF
- C\text{\textsubscript{OUT}}: 10µF
- L\text{\textsubscript{SEL}}
- GND
- STARTUP

### OUT 3.3V, 285mA
- EN
- C\text{\textsubscript{SEL}}
- GND

#### MAX17222
- 5V OUTPUT R\text{\textsubscript{SEL}} SHORT TO GND (NO RESISTOR)

#### MAX17223
- 3.3V OUTPUT R\text{\textsubscript{SEL}} 80.6K ±1%

---

* = IN < OUT
## Ordering Information

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>TEMPERATURE RANGE</th>
<th>PIN-PACKAGE</th>
<th>INPUT PEAK CURRENT</th>
<th>TRUE SHUTDOWN</th>
<th>ENABLE TRANSIENT PROTECTION (ETP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX17220ENT+</td>
<td>-40°C to +85°C</td>
<td>6 WLP</td>
<td>225mA</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>MAX17222ENT+</td>
<td>-40°C to +85°C</td>
<td>6 WLP</td>
<td>0.5A</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>MAX17223ENT+</td>
<td>-40°C to +85°C</td>
<td>6 WLP</td>
<td>0.5A</td>
<td>Yes</td>
<td>—</td>
</tr>
<tr>
<td>MAX17224ENT+</td>
<td>-40°C to +85°C</td>
<td>6 WLP</td>
<td>1A</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>MAX17225ENT+</td>
<td>-40°C to +85°C</td>
<td>6 WLP</td>
<td>1A</td>
<td>Yes</td>
<td>—</td>
</tr>
<tr>
<td>MAX17220ELT+</td>
<td>-40°C to +85°C</td>
<td>6 μDFN</td>
<td>225mA</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>MAX17222ELT+</td>
<td>-40°C to +85°C</td>
<td>6 μDFN</td>
<td>0.5A</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>MAX17223ELT+</td>
<td>-40°C to +85°C</td>
<td>6 μDFN</td>
<td>0.5A</td>
<td>Yes</td>
<td>—</td>
</tr>
<tr>
<td>MAX17224ELT+</td>
<td>-40°C to +85°C</td>
<td>6 μDFN</td>
<td>1A</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>MAX17225ELT+</td>
<td>-40°C to +85°C</td>
<td>6 μDFN</td>
<td>1A</td>
<td>Yes</td>
<td>—</td>
</tr>
</tbody>
</table>

*Denotes a lead(Pb)-free/RoHS-compliant package.

T = Tape and reel.
## Revision History

<table>
<thead>
<tr>
<th>REVISION NUMBER</th>
<th>REVISION DATE</th>
<th>DESCRIPTION</th>
<th>PAGES CHANGED</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2/17</td>
<td>Initial release</td>
<td>—</td>
</tr>
<tr>
<td>1</td>
<td>4/17</td>
<td>Updated Electrical Characteristics and Ordering Information tables and added Operation with $V_{IN} &gt; V_{OUT}$ section</td>
<td>3, 8, 13, 19, 21</td>
</tr>
<tr>
<td>2</td>
<td>5/17</td>
<td>Removed MAX17221 part number, general data sheet updates</td>
<td>1–23</td>
</tr>
<tr>
<td>3</td>
<td>7/17</td>
<td>Updated Shutdown Current into IN and Total Shutdown Current into IN LX conditions, Note 5, TOC 5, True Shutdown Current section, Figure 10, added TOC 18, removed future product references (MAX17220ENT+, MAX17224ENT+, MAX17220ELT+, MAX17223ELT+, and MAX17224ELT+)</td>
<td>3–5, 7, 10, 18, 22</td>
</tr>
</tbody>
</table>

Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc. © 2017 Maxim Integrated Products, Inc. | 23