General Description
The MAX16804 current regulator operates from a 5.5V to 40V input voltage range and delivers 35mA to 350mA to one or more strings of high-brightness LEDs (HB LEDs). The output current of the MAX16804 is set by using an external current-sense resistor in series with the LEDs. A dual-mode DIM pin and on-board 200Hz ramp generator allow PWM dimming with an analog or PWM input signal. The analog control signal at dimming input DIM allows for a theater-dimming effect to be implemented. Fast turn-on and turn-off times ensure a wide-range PWM operation, while wave-shaping circuitry minimizes EMI. The differential current-sense input increases LED current accuracy and noise immunity. The MAX16804 is well suited for applications requiring high-voltage input and is able to withstand load-dump events up to 45V. An on-board pass element minimizes external components while providing 3% output-current accuracy. Additional features include a 5V regulated output and short-circuit and thermal protection. The MAX16804 is available in a thermally enhanced, 5mm x 5mm, 20-pin TQFN package and is specified over the automotive -40°C to +125°C temperature range.

Applications
- Warning Lights for Emergency Vehicles
- Navigation and Marine Indicators
- Signage, Canopies, and Beacons

Benefits and Features
- Flexible Dimming Control Simplifies Lighting System Design
  - Analog or PWM Control Signal for PWM and Theater Dimming
  - 200Hz On-Board Ramp Generator
  - High-Voltage (Up to 40V) DIM Pin
  - Additional +5V On-Board Regulator with 2mA Capability
- External Synchronization and Pulse Shaping Reduce Radio Interference
  - Wave-Shaped Edges Minimize EMI During PWM Dimming
  - Syncs to External PWM Signal (Up to 2kHz)
- Powers High-Power, High-Brightness LEDs
  - 35mA to 350mA Adjustable LED Current
  - 3% LED Current Accuracy
  - Differential LED Current Sense
- Enables High-Efficiency Designs to Minimize Heat Dissipation
  - Integrated Pass Element with Low-Dropout Voltage (0.5V typ)
  - 200mV Current-Sense Reference Reduces Power Losses
- Thermal Shutdown and Output Short-Circuit Protection Provide Additional Safety
  - 5.5V to 40V Operating Range
  - -40°C to +125°C Operating Temperature Range

Pin Configuration appears at end of data sheet.

Simplified Diagrams
### Absolute Maximum Ratings

- IN to GND: -0.3V to +45V
- DIM, OUT, EN to GND: -0.3V to (VIN + 0.3V)
- IN Slew Rate: 20V < VIN < 45V: 250mV/μs
- CS+, V5 to GND: -0.3V to +6V
- CS- to GND: -0.3V to +0.3V
- OUT Short Circuited to GND Duration: 1 hour
- Maximum Current Into Any Pin (except IN and OUT): ±20mA
- Continuous Power Dissipation (T_A = +70°C): 2758.6mW
- Operating Temperature Range: -40°C to +125°C
- Junction Temperature: +150°C
- Storage Temperature Range: -65°C to +150°C
- Lead Temperature (soldering, 10s): +300°C

### Electrical Characteristics

(V_IN = V_EN = 12V, C_V5 = 0.1μF, I_V5 = 0, CS- = GND, R_SENSE = 0.56Ω (see the Typical Operating Circuit), V_DIM = 4V, T_A = T_J = -40°C to +125°C, unless otherwise noted. Typical values are at T_A = T_J = +25°C.) (Note 1)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage Range</td>
<td>V_IN</td>
<td>(Note 2)</td>
<td>5.5</td>
<td>40.0</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Ground Current</td>
<td>I_G</td>
<td></td>
<td>2.5</td>
<td>4.5</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Shutdown Supply Current</td>
<td>I_SHDN</td>
<td>V_EN ≤ 0.3V</td>
<td>12</td>
<td>40</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>Guaranteed Output Current</td>
<td>I_OUT</td>
<td>R_SENSE = 0.55Ω</td>
<td>350</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Current Accuracy</td>
<td></td>
<td>35mA &lt; I_OUT &lt; 350mA, not including R_SENSE tolerance</td>
<td>3</td>
<td>%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dropout Voltage (Note 3)</td>
<td>ΔV_DO</td>
<td>I_OUT = 350mA, 12V &lt; V_IN &lt; 40V</td>
<td>0.4</td>
<td>1.2</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Output Current Slew Rate (External PWM Signal at DIM)</td>
<td></td>
<td>Current rising, DIM rising to 4V</td>
<td>17</td>
<td>mA/μs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Short-Circuit Current</td>
<td>V_OUT = 0V</td>
<td></td>
<td>600</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### ENABLE INPUT

- EN Input Current | I_EN | 100 | nA |
- EN Input-Voltage High | V_IH | 2.8 | V |
- EN Input-Voltage Low | V_IL | 0.6 | V |
- Enable Turn–On Time | t_ON | EN rising edge to 90% of OUT | 250 | μs |

### CURRENT SENSE (Note 4)

- Regulated R_SENSE Voltage | V_RSENSE | V_SENSE = V_CS+ - V_CS- | 192 | 198 | 204 | mV |
- Input Current (CS+) | V_CS+ = 220mV | +14 | μA |
- Input Current (CS-) | V_CS- = 220mV | -75 | μA |

### INTERNAL RAMP GENERATOR

- Internal Ramp Frequency | f_RAMP | 180 | 200 | 220 | Hz |
- External Sync Frequency Range | f_DIM | 80 | 2000 | Hz |
- External Sync Voltage Low | | 0.4 | V |
- External Sync Voltage High | | 2.8 | V |

### EXTERNAL PWM DIMMING INPUT

- DIM Input Current | | 1 | μA |
- Turn-On Time | t_ON | After DIM rising to 4V (Note 5) | 28 | 52 | μs |
- Turn-Off Time | t_OFF | After DIM falling to 0.6V (Note 5) | 19 | 38 | μs |
Electrical Characteristics (continued)

(V_{IN} = V_{EN} = 12V, C_{V5} = 0.1\mu F, I_{V5} = 0, CS- = GND, R_{SENSE} = 0.56\Omega (see the Typical Operating Circuit), V_{DIM} = 4V, T_A = T_J = -40°C to +125°C, unless otherwise noted. Typical values are at T_A = T_J = +25°C.) (Note 1)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>THERMAL PROTECTION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal-Shutdown Temperature</td>
<td>T_J(SHDN)</td>
<td></td>
<td>+155</td>
<td></td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td>Thermal-Shutdown Hysteresis</td>
<td></td>
<td></td>
<td>23</td>
<td></td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td>+5V REGULATOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Voltage Regulation</td>
<td>V5</td>
<td>0 \leq I_{V5} \leq 2mA</td>
<td>4.8</td>
<td>5.1</td>
<td>5.4</td>
<td>V</td>
</tr>
<tr>
<td>V5 Short-Circuit Current</td>
<td>V5 = 0V (Note 6)</td>
<td></td>
<td>12</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
</tbody>
</table>

Note 1: All devices are 100% production tested at T_A = +25°C. Limits over the operating temperature range are guaranteed by design.

Note 2: Resistors were added from OUT to CS+ to aid with the power dissipation during testing.

Note 3: Dropout is measured as follows:
Connect a resistor from OUT to CS+. Connect R_{SENSE} = 0.56\Omega from CS+ to CS-. Set V_{IN} = V_{OUT} +3V (record V_{OUT} as V_{OUT1}). Reduce V_{IN} until V_{OUT} = 0.97 \times V_{OUT1} (record as V_{IN2} and V_{OUT2}). ΔV_{DO} = V_{IN2} - V_{OUT2}.

Note 4: I_{V5} = 0mA.

Note 5: τ_{ON} time includes the delay and the rise time needed for I_{OUT} to reach 90% of its final value. τ_{OFF} time is the time needed for I_{OUT} to drop below 10%. See the Typical Operating Characteristics. τ_{ON} and τ_{OFF} are tested with 13Ω from OUT to CS+.

Note 6: Thermal shutdown does not function if the output of the 5V reference is shorted to ground. Shorting V5 to GND disables the output.

Typical Operating Characteristics

(V_{IN} = 12V, V_{EN} = V_{IN}, C_{V5} = 0.1\mu F, I_{V5} = 0, CS- = GND, R_{SENSE} = 0.56\Omega, connect OUT to CS+, V_{DIM} = 4V, T_A = +25°C, unless otherwise noted.)
Typical Operating Characteristics (continued)

(V_{IN} = 12V, V_{EN} = V_{IN}, C_{V5} = 0.1\mu F, I_{V5} = 0, CS- = GND, R_{SENSE} = 0.56\Omega, connect OUT to CS+, V_{DIM} = 4V, T_{A} = +25^\circ C, unless otherwise noted.)

**DROPOUT VOLTAGE vs. TEMPERATURE**

**SHUTDOWN CURRENT vs. TEMPERATURE**

**+5V REGULATOR OUTPUT vs. TEMPERATURE**

**+5V REGULATOR OUTPUT vs. V_{IN}**

**(V_{CS+} - V_{CS-}) vs. I_{V5}**

**200Hz DIMMED OPERATION**

**LED CURRENT FALL TIME (EXPANDED)**

**LED CURRENT RISE TIME (EXPANDED)**
Typical Operating Characteristics (continued)

(\(V_{\text{IN}} = 12\, \text{V}, \, V_{\text{EN}} = V_{\text{IN}}, \, C_{\text{V5}} = 0.1\, \mu\text{F}, \, I_{\text{V5}} = 0, \, \text{CS-} = \text{GND}, \, R_{\text{SENSE}} = 0.56\, \Omega, \) connect OUT to CS+, \(V_{\text{DIM}} = 4\, \text{V}, \, T_{\text{A}} = +25^\circ\, \text{C}, \) unless otherwise noted.)

### Pin Description

<table>
<thead>
<tr>
<th>PIN</th>
<th>NAME</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 20</td>
<td>OUT</td>
<td>Current-Regulated Output. Connect pin 1 to pin 20.</td>
</tr>
<tr>
<td>2, 3</td>
<td>IN</td>
<td>Input Supply. Bypass IN with a 0.1(\mu)F (min) capacitor to GND. Connect pin 2 to pin 3.</td>
</tr>
<tr>
<td>4, 9, 11, 18</td>
<td>N.C.</td>
<td>No Connection. Leave unconnected (internal connection).</td>
</tr>
<tr>
<td>5–8, 10, 16</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>12, 15</td>
<td>V5</td>
<td>+5V Regulated Output. Connect a 0.1(\mu)F capacitor from V5 to GND.</td>
</tr>
<tr>
<td>13</td>
<td>CS+</td>
<td>Positive Input of the Internal Differential Amplifier. Connect the current-sense resistor between CS+ and CS- to program the output current level.</td>
</tr>
<tr>
<td>14</td>
<td>CS-</td>
<td>Negative Input of the Internal Differential Amplifier. Connect the current-sense resistor between CS- and CS+ to program the output current level.</td>
</tr>
<tr>
<td>17</td>
<td>DIM</td>
<td>Dimming Input. See the Dimming Input (DIM) section.</td>
</tr>
<tr>
<td>19</td>
<td>EN</td>
<td>Enable Input. Drive EN high to enable the output and the 5V LDO.</td>
</tr>
<tr>
<td></td>
<td>EP</td>
<td>Exposed Pad. Connect to the ground plane for effective power dissipation. Do not use as the only ground connection.</td>
</tr>
</tbody>
</table>
Detailed Description

The MAX16804 is a high-current regulator that operates from a wide input voltage range of 5.5V to 40V and is capable of providing up to 350mA of current to one or more strings of HB LEDs. A +5V regulated output provides up to 2mA of current to power external circuitry. In addition, the MAX16804 features thermal and output short-circuit protection. The wide operating voltage range helps protect the MAX16804 against large transients such as those found in load-dump situations up to 45V.

The MAX16804 uses a feedback loop to control the output current. The differential voltage across the sense resistor is compared to a fixed reference voltage, and the error is amplified to serve as the drive to the internal pass device (see the Functional Diagram). The regulation point is factory-set at \( (V_{CS^+} - V_{CS^-}) = 198 \pm 6\text{mV} \). The regulated current is user-defined by the value of \( R_{SENSE} \).

The MAX16804 is a current controller internally optimized for driving the impedance range expected from one to ten or more HB LEDs.

Dimming Input (DIM)
The MAX16804’s dimming input functions with either an analog or PWM control signal. If the pulse detector detects three edges of a PWM signal with a frequency range between 80Hz and 2kHz, the MAX16804 synchronizes to external PWM input signal and pulse-width modulates the LED current. If an analog control signal is applied to DIM, the MAX16804 compares the DC input to an internally generated 200Hz ramp to pulse-width modulate the LED current.

The output current duty cycle is adjustable from 0% to 100% \( (0.21V < V_{DIM} < 3.1V) \).

Use the following formula to calculate the output current duty cycle:

\[
\text{Duty cycle} = \frac{(V_{DIM} - 0.21V)}{(2.895V)} \quad (1)
\]
The dimming feature can be used for LED brightness adjustment (see the Simplified Diagrams) and theater dimming. If an external PWM signal is used, the theater-dimming effect can be achieved by varying the PWM duty cycle. Figure 1 shows a simple circuit that implements theater dimming with a DC input signal.

**+5V Regulator**

The MAX16804 includes a fixed +5V output regulator that delivers up to 2mA of load current throughout the 6.5V to 40V input voltage range. Connect a 0.1μF compensation capacitor from V5 to ground. Shorting V5 to ground disables the thermal shutdown. When EN is low, V5 is off. V5 stays on during PWM dimming.

**Thermal Protection**

The MAX16804 enters a thermal-shutdown mode in the event of overheating. This typically occurs in overload or short-circuit conditions on the output. If the junction temperature exceeds \( T_J = +155^\circ C \) (typ), the internal thermal-protection circuitry turns off the series pass device. The MAX16804 recovers from thermal-shutdown mode once the junction temperature drops by 23°C (typ). The part therefore protects itself by thermally cycling in the event of a short-circuit or overload condition.

**Applications Information**

**Programming the LED Current**

The MAX16804 uses a sense resistor across CS+ and CS- to set the LED current. The differential sense amplifier connected across RSENSE provides ground-loop immunity and low-frequency noise rejection. The LED current is given by:

\[
I_{LED} = \frac{V_{SENSE}}{R_{SENSE}} \quad (2)
\]

**Input-Voltage Considerations**

For proper operation, the minimum input voltage must always be:

\[
V_{IN(MIN)} \geq V_{RSENSE(MAX)} + V_{FT(MAX)} + \Delta V_{DO(MAX)} \quad (3)
\]

where \( V_{FT(MAX)} \) is the maximum forward voltage of all series connected LEDs and \( \Delta V_{DO(MAX)} \) is the maximum drop output voltage. The minimum operating voltage of the device is +5.5V.

**Two Brightness Levels for TAIL/STOP Lights**

Figure 2 shows two-level brightness adjustment using the MAX16804 with minimum external components. Set the dimming level with a resistive divider connected to DIM. See Equation 1 for details.
LED Current Thermal Foldback
With a minimum number of external components, the MAX16804 provides LED current thermal foldback using a negative temperature coefficient (NTC) thermistor. Figure 3 shows a thermistor connected to V5 and the CS+ of the MAX16804. As the temperature increases, the voltage drop across R2 increases causing the LED current to decrease.

\[ I_{LED} = \frac{V_{SENSE} - \left(\frac{R2}{R2 + RT}\right) \times V5}{R1} \]  

Other Applications
Figure 4 shows an application circuit with the MAX16804 using a single BJT to provide high output current. For proper operation:

\[ V_{IN(MIN)} > V_{CESAT(MAX)} + V_{FT(MAX)} + V_{RSENSE} \]  

where \( V_{CESAT(MAX)} \) is the maximum saturation voltage of the external BJT.

Figure 3. LED Current Thermal Foldback Operation with an NTC Thermistor

Figure 4. Increased Output Current (Ampere Range) with a Single BJT
MAX16804
High-Voltage, 350mA LED Driver with Analog and PWM Dimming Control

Typical Operating Circuit

Pin Configuration

Chip Information
PROCESS: BiCMOS

Package Information
For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

<table>
<thead>
<tr>
<th>PACKAGE TYPE</th>
<th>PACKAGE CODE</th>
<th>DOCUMENT NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 TQFN</td>
<td>T2055MN-5</td>
<td>21-0140</td>
</tr>
</tbody>
</table>

www.maximintegrated.com
Revision History

<table>
<thead>
<tr>
<th>REVISION NUMBER</th>
<th>REVISION DATE</th>
<th>DESCRIPTION</th>
<th>PAGES CHANGED</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>7/06</td>
<td>Initial release</td>
<td>—</td>
</tr>
<tr>
<td>1</td>
<td>5/08</td>
<td>Corrected Figure 2.</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>1/15</td>
<td>Updated Benefits and Features section</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>4/15</td>
<td>Deleted automotive references in General Description, Applications, and Detailed Description sections</td>
<td>1, 6</td>
</tr>
</tbody>
</table>

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated’s website at www.maximintegrated.com.

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  © 2015 Maxim Integrated Products, Inc.