

Evaluation Kit Available

Design Resources

Tools and Models

Support

Click here to ask an associate for production status of specific part numbers.

Power-Management Solution

MAX14720/MAX14750

General Description

The MAX14720/MAX14750 are compact power-management solutions for space-constrained, battery-powered applications where size and efficiency are critical. Both devices integrate a power switch, a linear regulator, a buck regulator, and a buck-boost regulator.
The MAX14720 is designed to be the primary powermanagement device and is ideal for either non-rechargeable battery (coin-cell, dual alkaline) applications or for rechargeable solutions where the battery is removable and charged separately. The device includes a button monitor and sequencer.
The MAX14750 works well as a companion to a charger or PMIC in rechargeable applications. It provides direct pin control of each function and allows greater flexibility for controlling sequencing.
The devices include two programmable micro-l ${ }_{Q}$, highefficiency switching converters: a buck-boost regulator and a synchronous buck regulator. These regulators feature a burst mode for increased efficiency during lightload operation.

The low-dropout linear regulator has a programmable output. It can also operate as a power switch that can disconnect the quiescent load of system peripherals.
The devices also include a power switch with batterymonitoring capability. The switch can isolate the battery from all system loads to maximize battery life when not operating. It is also used to isolate the battery-impedance measurements. This switch can operate as a generalpurpose load switch as well.
The MAX14720 includes a programmable power controller that allows the device to be configured either for use in applications that require a true off state or for always-on applications. This controller provides a delayed reset signal, voltage sequencing, and customized button timing for on/off control and recovery hard reset.
Both devices also include a multiplexer for monitoring the power inputs and outputs of each function.
These devices are available in a 25 -bump, 0.4 mm pitch, $2.26 \mathrm{~mm} \times 2.14 \mathrm{~mm}$ wafer-level package (WLP) and operate over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ extended temperature range.

Benefits and Features

- Extended System Battery Use Time
- Micro-IQ 250mW Buck-Boost Regulator
- Input Voltage from 1.8 V to 5.5 V
- Output Voltage Programmable from 2.5 V to 5 V
- 1.1 A A Quiescent Current
- Programmable Current Limit
- Micro- $\mathrm{I}_{\mathrm{Q}} 200 \mathrm{~mA}$ Buck Regulator
- Input Voltage from 1.8V to 5.5V
- Output Voltage Programmable from 1.0V to 2.0 V
- $0.9 \mu \mathrm{~A}$ Quiescent Current
- Micro-IQ 100mA LDO
- Input Voltage From 1.71V to 5.5 V
- Output Programmable From 0.9V to 4.0 V
- 0. $9 \mu \mathrm{~A}$ Quiescent Current
- Configurable as Load Switch
- Extend Product Shelf-Life
- Battery Seal Mode (MAX14720)
- 120nA Battery Current
- Power Switch On-Resistance
- $250 \mathrm{~m} \Omega$ (max) at 2.7 V
- $500 \mathrm{~m} \Omega$ (max) at 1.8 V
- Battery Impedance Detector
- Easy-to-Implement System Control
- Configurable Power Mode and Reset Behavior (MAX14720)
- Push-Button Monitoring to Enable Ultra-Low Power Shipping Mode
- Disconnects All Loads From Battery and Reduces Leakage to Less than $1 \mu \mathrm{~A}$
- Power-On Reset (POR) Delay and Voltage Sequencing
- Individual Enable Pins (MAX14750)
- Voltage Monitor Multiplexer
- ${ }^{2}{ }^{2}$ C Control Interface

Applications

- Wearable Medical Devices
- Wearable Fitness Devices
- Portable Medical Devices

Ordering Information appears at end of data sheet.

Package Information

PACKAGE TYPE: 25 WLP

Package Code	W252M2+1
Outline Number	$\underline{21-0788}$
Land Pattern Number	Refer to Application Note 1891
THERMAL RESISTANCE, FOUR-LAYER BOARD	
Junction to Ambient $\left(\theta_{\mathrm{JA}}\right)$	$52.43^{\circ} \mathrm{C} / \mathrm{W}$

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a " + ", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.

Electrical Characteristics

$\left(\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{BIN}}=\mathrm{V}_{\mathrm{LIN}}=\mathrm{V}_{\mathrm{HVIN}}=\mathrm{V}_{\text {SWIN }}=2.7 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, all registers in their default state, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
SUPPLY CURRENT						
Seal Input Current	ISEAL	Seal mode, all functions disabled		0.12	1	$\mu \mathrm{A}$
Off Input Current	IOFF	No blocks enabled, no battery measurement active		1.2	2.8	$\mu \mathrm{A}$
MON Input Current	${ }^{\text {mon }}$	No blocks enabled, no battery measurement active, MON enabled, MONCtr[2:0] = 000 .		4	7.2	$\mu \mathrm{A}$
Switch Input Current	Isw	Switch enabled, ISWOUT $=0 \mathrm{~A}$		1.2	2.8	$\mu \mathrm{A}$
LDO Input Current	ILDO	LDO enabled, $\mathrm{I}_{\text {LOUT }}=0 \mathrm{~A}$		2.1	4.4	$\mu \mathrm{A}$
		LDO enabled, LIN UVLO enabled, $\mathrm{l}_{\text {LOUT }}=0 \mathrm{~A}$		2.4	4.8	
		LDO enabled, switch mode, lout $_{\text {LOU }}=0 \mathrm{~A}$		1.5	3.2	
Buck Input Current	$I_{\text {BUCK }}$	Buck enabled, $\mathrm{I}_{\text {BOUT }}=0 \mathrm{~A}$		2	4.1	$\mu \mathrm{A}$
		Buck enabled, BIN UVLO enabled, $\mathrm{I}_{\text {BOUT }}=0 \mathrm{~A}$		2.2	4.5	
Buck-Boost Input Current	$\mathrm{I}_{\text {BCKBST }}$	Buck-Boost enabled, $\mathrm{I}_{\text {HVOUT }}=0 \mathrm{~A}$, $\mathrm{V}_{\text {HVOUT }}=4 \mathrm{~V}$		2	4.7	$\mu \mathrm{A}$
		Buck-Boost enabled, BIN UVLO enabled, $\mathrm{I}_{\text {HVout }}=0 \mathrm{~A}$, $\mathrm{V}_{\text {HVOUT }}=4 \mathrm{~V}$		2.3	5	
On Input Current	ION	LDO, buck, and buck-boost enabled; BIN UVLO and LIN UVLO enabled; ISWOUT $=I_{\text {LOUT }}=I_{\text {BOUT }}$ $=I_{\text {HVOUT }}=0 \mathrm{~A}$		4.4	8.3	$\mu \mathrm{A}$
POWER SEQUENCE						
Boot Time	${ }_{\text {t }}^{\text {BOOT }}$	MAX14720	9.9	11	12.1	ms
		MAX14750	21.6	24	26.4	
Reset Time	$\mathrm{t}_{\text {RST }}$	MAX14720	72	80	88	ms

Electrical Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{BIN}}=\mathrm{V}_{\mathrm{LIN}}=\mathrm{V}_{\mathrm{HVIN}}=\mathrm{V}_{\mathrm{SWIN}}=2.7 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, all registers in their default state, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
POWER SWITCH						
Input Voltage Range	$\mathrm{V}_{\text {SWIN }}$	$\mathrm{V}_{\text {SWIN }} \leq \mathrm{V}_{\text {CC }}$	1.8		5.5	V
Quiescent Supply Current	$\mathrm{l}_{\text {Q_S }}$ W	Iswout $=0 \mathrm{~A}$		0.05	0.09	$\mu \mathrm{A}$
Switch On-Resistance	Ron_sw	$I_{\text {SWOUT }}=200 \mathrm{~mA}$		0.16	0.25	Ω
		$\mathrm{V}_{\text {SWIN }}=1.8 \mathrm{~V}$, I ${ }_{\text {SWOUT }}=200 \mathrm{~mA}$		0.27	0.5	
Maximum Output Current	Iswout_max		200			mA
Turn-On Time	ton_SW	$I_{\text {SWOUT }}=0 \mathrm{~mA}, \mathrm{C}_{\text {SWOUT }}=100 \mu \mathrm{~F}$, time from 10% to 90% of $V_{\text {SWIN }}$, SWSoftStart = 0	0.65			ms
		$I_{\text {SWOUT }}=0 \mathrm{~mA}$, C SWOUT $=100 \mu \mathrm{~F}$, time from 10% to 90% of $\mathrm{V}_{\text {SWIN }}$, SWSoftStart = 1	13.8			ms
Short-Circuit Current Limit	ISHRT_SW	$\mathrm{V}_{\text {SWOUT }}=$ GND, SWSoftStart $=0$	200	460	700	mA
Soft-Start Current Limit	ISSTR_SW	$\mathrm{V}_{\text {SWOUT }}=$ GND, SWSoftStart $=1$	9	25	54	mA
Thermal-Shutdown Threshold	TSHDN_SW	TJ rising		150		${ }^{\circ} \mathrm{C}$
Thermal-Shutdown Hysteresis	TSHDN_HYST_SW			20		${ }^{\circ} \mathrm{C}$

BUCK BOOST CONVERTER (Cout = 10MF, L = 4.7MF, unless otherwise noted.)

| Quiescent Supply
 Current | V $_{\text {HVIN }}$ | | 1.8 | 5.5 | V |
| :--- | :---: | :--- | :--- | :---: | :---: | :---: |

Electrical Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{BIN}}=\mathrm{V}_{\mathrm{LIN}}=\mathrm{V}_{\mathrm{HVIN}}=\mathrm{V}_{\mathrm{SWIN}}=2.7 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, all registers in their default state, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Load Regulation Error	VLOADREG_BOOST	$\begin{aligned} & V_{\text {HVOUT }}=4 V, I_{\text {HVOUT }}=10 \mu \mathrm{~A} \text { to } \\ & 50 \mathrm{~mA}, \mathrm{I}_{\text {SET }}=100 \mathrm{~mA} \end{aligned}$		100		mV / A
		$\mathrm{V}_{\text {HVOUT }}=4 \mathrm{~V}$, $\mathrm{I}_{\text {HVOUT }}=10 \mu \mathrm{~A}$ to 100 mA , $\mathrm{I}_{\text {SET }}=100 \mathrm{~mA}$		310		
Line Transient	VLINETRAN_BST	$\begin{aligned} & \mathrm{V}_{\mathrm{HVOUT}}=4 \mathrm{~V}, \mathrm{I}_{\mathrm{SET}}=100 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{HVIN}}=\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \text { to } 5 \mathrm{~V}, \\ & 0.2 \mu \mathrm{~s} \text { rise time } \end{aligned}$		15		mV
Load Transient	VLOADTRAN_BST	$\mathrm{I}_{\text {HVOUT }}=0 \mathrm{~mA}$ to $10 \mathrm{~mA}, 200 \mathrm{~ns}$ rise time, $\mathrm{V}_{\text {HVOUT }}=4 \mathrm{~V}$, $\mathrm{I}_{\text {SET }}=100 \mathrm{~mA}$		9		mV
		$\mathrm{I}_{\text {HVOUT }}=0 \mathrm{~mA}$ to 100 mA , 200ns rise time, $\mathrm{V}_{\text {HVOUT }}=4 \mathrm{~V}$, $\mathrm{I}_{\text {SET }}=100 \mathrm{~mA}$		31		
Oscillator Frequency	fosc_BST		1.78	2	2.25	MHz
Passive Discharge Pulldown Resistance	RPDL_BST		5	10	16	k Ω
Active Discharge Current	IACTDL_BST	$\mathrm{V}_{\mathrm{HVIN}}=3 \mathrm{~V}$	6	19	38	mA
Turn-On Time	ton_BOOST	Time from enable to full current capability		100		ms
UVLO on HVOUT	V HVOUT _UVLO	UVLO voltage on HVOUT rising	1.6	1.75	1.9	V
UVLO Threshold Hysteresis	VUVLO_HYS			150		mV
Precharge Current	IPC_BOOST	Precharge current. $\mathrm{V}_{\mathrm{HVIN}}=1.8 \mathrm{~V}$, $\mathrm{V}_{\text {HVOUT }}=1.65 \mathrm{~V}$	4	6.5	9	mA
Startup Input Current	IINSTUP_BST	Input startup current. $\mathrm{V}_{\mathrm{HVIN}}=1.8 \mathrm{~V}$, $\mathrm{V}_{\text {HVOUT }}=1.6 \mathrm{~V}$		11		mA
Startup Output Current	IOSTUP_BST	Output startup current. $\mathrm{V}_{\mathrm{HVIN}}=1.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{HVOUT}}=5 \mathrm{~V}$		6.5		mA
Pulse Mode Input Current Limit	IPLS_IN	$\begin{aligned} & \mathrm{V}_{\text {HVOUT }}=4 \mathrm{~V}, \mathrm{~V}_{\mathrm{HVIN}}<\mathrm{V}_{\text {HVOUT }}- \\ & 0.5 \mathrm{~V}, \mathrm{f}_{\text {SW }}=\mathrm{f}_{\mathrm{OSC}} / 10, \\ & \mathrm{I}_{\text {SET }}=100 \mathrm{~mA} \end{aligned}$		6.6		mA
Pulse Mode Switching Period Ratio	$\mathrm{T}_{\text {Ratio }}$	fosc/fsw, 128 steps	10		138	
Short-Circuit Peak Current Limit	ISHRT_BOOST	$\mathrm{V}_{\text {HVOUT }}=$ GND.	0.4	1.1	1.9	A
Thermal-Shutdown Threshold	TSHDN_BST	T_{J} rising		150		${ }^{\circ} \mathrm{C}$
Thermal-Shutdown Hysteresis	TSHDN_HYST_BST			21		${ }^{\circ} \mathrm{C}$

Electrical Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{BIN}}=\mathrm{V}_{\mathrm{LIN}}=\mathrm{V}_{\mathrm{HVIN}}=\mathrm{V}_{\text {SWIN }}=2.7 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, all registers in their default state, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
BUCK CONVERTER (COUT $=10 \mathrm{MF}, \mathrm{L}=2.2 \mathrm{MH}$, unless otherwise noted. ${ }^{\text {(}}$						
Input Voltage Range	$\mathrm{V}_{\text {BIN }}$		1.8		5.5	V
Quiescent Supply Current	IQ_BUCK	$\mathrm{I}_{\text {BOUT }}=0 \mathrm{~A}$		0.8	1.6	$\mu \mathrm{A}$
		$\mathrm{I}_{\text {BOUT }}=0 \mathrm{~A}, \mathrm{BIN}$ UVLO enabled		1	2	
		$\mathrm{I}_{\text {BOUT }}=0 \mathrm{~A}$, BuckMd[1:0] $=01$			4.8	mA
Maximum Operative Output Current	$I_{\text {maxbout }}$		250			mA
Output Voltage	$V_{\text {BOUT }}$	25mV step	1		2	V
Output Accuracy	Acc_bout	$\mathrm{V}_{\mathrm{BIN}}=\left(\mathrm{V}_{\mathrm{BOUT}}+0.1 \mathrm{~V}\right)$ or higher, $\mathrm{I}_{\text {BOUT }}=1 \mathrm{~mA}$; average output	-3		+3	\%
Dropout Voltage	V ${ }_{\text {DROP_BUCK }}$	$\mathrm{I}_{\text {BOUT }}=0 \mathrm{~A}$		95	120	mV
Line Regulation Error	V Linereg_buck	$\begin{aligned} & \mathrm{V}_{\text {BIN }}=\text { from } 2 \mathrm{~V} \text { to } 5 \mathrm{~V} \text {, } \\ & \mathrm{V}_{\text {BOUT }}=1.2 \mathrm{~V} \end{aligned}$		0.65		\%/V
Load Regulation Error	VLOADREG_BUCK	BuckInteg $=1, \mathrm{I}_{\text {BOUT }}=200 \mathrm{~mA}$		23		mV
Line Transient	VLINETRAN_BUCK	$\mathrm{V}_{\mathrm{BOUT}}=1.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{BIN}}=\mathrm{V}_{\mathrm{CC}}: 2.0 \mathrm{~V} \text { to }$ $5 \mathrm{~V}, 1 \mu \mathrm{~s}$ rise time		50		mV
Load Transient	VLOADTRAN_BUCK	$I_{\text {BOUT }}=0 \mathrm{~mA}$ to $200 \mathrm{~mA}, 200 \mathrm{~ns}$ rise time		70		mV
Oscillator Frequency	fosc_bk		1.78	2	2.25	MHz
Passive Discharge Pull-Down Resistance	RPDL_BK		5	10	16	k Ω
Active Discharge Current	$\mathrm{I}_{\text {ACTDL_BK }}$		5.5	17	33	mA
Turn-On Time	ton_BUCK	Time from enable to full current capability; BuckFst = 0		60		ms
		Time from enable to full current capability; BuckFst = 1		30		
Startup Output Current	ISTUP_BK	BuckFst $=0$		18		mA
Startup Output Current	ISTUP_BK	BuckFst = 1		42		mA
Short-Circuit Peak Current Limit	ISHRT_BUCK	$\mathrm{V}_{\text {BOUT }}=\mathrm{GND}$.	0.54	0.8	2.19	A
Thermal-Shutdown Threshold	TSHDN_BUCK	TJ rising		150		${ }^{\circ} \mathrm{C}$
Thermal-Shutdown Hysteresis	TSHDN_HYST_BUCK			21		${ }^{\circ} \mathrm{C}$

Electrical Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{BIN}}=\mathrm{V}_{\mathrm{LIN}}=\mathrm{V}_{\mathrm{HVIN}}=\mathrm{V}_{\text {SWIN }}=2.7 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, all registers in their default state, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
LDO ($\mathrm{C}_{\text {LOUT }}=1 \mu \mathrm{~F}$, unless otherwise noted. Typical values are with $\mathrm{I}_{\text {LOUT }}=10 \mathrm{~mA}, \mathrm{~V}_{\text {LOUT }}=2 \mathrm{~V}$)						
Input Voltage Range	$\mathrm{V}_{\text {LIN }}$	LDO mode	1.71		5.5	V
		Switch mode	1.2		5.5	
Quiescent Supply Current	I_{Q} LDO	LIOUT $=0 \mathrm{~A}$		0.9	1.9	$\mu \mathrm{A}$
		ILOUT $=0 \mathrm{~A}$, LIN UVLO enabled		1.1	2.2	
		$\mathrm{I}_{\text {LOUT }}=0 \mathrm{~A}$, switch mode		0.3	0.5	
Quiescent Supply Current in dropout	IQ_LDO_DRP	$\mathrm{I}_{\text {LOUT }}=0 \mathrm{~A}, \mathrm{~V}_{\text {SET }}=2.8 \mathrm{~V}$		2.1	4.6	$\mu \mathrm{A}$
Maximum Output Current	ILOUT_MAX	$\mathrm{V}_{\text {LIN }}>1.8 \mathrm{~V}$	100			mA
		$\mathrm{V}_{\text {LIN }}=1.8 \mathrm{~V}$ or lower	50			
Output Voltage	V LOUT	100 mV step	0.9		4	V
Output Accuracy	$A C C_{\text {LDO }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{LIN}}=\left(\mathrm{V}_{\mathrm{LOUT}}+0.5 \mathrm{~V}\right) \text { or higher, } \\ & \mathrm{I}_{\text {LOUT }}=1 \mathrm{~mA} \end{aligned}$	-3.1		+3.1	\%
Dropout Voltage	VDROP_LDO	$\begin{aligned} & \mathrm{V}_{\mathrm{LIN}}=\mathrm{V}_{\mathrm{SET}}=2.7 \mathrm{~V}, \\ & \mathrm{I}_{\text {LOUT }}=100 \mathrm{~mA} \end{aligned}$			100	mV
Line Regulation Error	VLINEREG_LDO	$\mathrm{V}_{\text {LIN }}=\left(\mathrm{V}_{\text {LOUT }}+0.5 \mathrm{~V}\right)$ to 5.5 V	-0.5		+0.5	\%/V
Load Regulation Error	VLOADREG_LDO	$\mathrm{V}_{\mathrm{LIN}}=1.8 \mathrm{~V}$ or higher, LIOUT $=100 \mu \mathrm{~A}$ to 100 mA		0.001	0.005	\%/mA
Line Transient	VLINETRAN_LDO	$\mathrm{V}_{\text {LIN }}=4 \mathrm{~V}$ to 5 V , 200ns rise time		± 35		mV
		$\mathrm{V}_{\text {LIN }}=4 \mathrm{~V}$ to $5 \mathrm{~V}, 1 \mu$ s rise time		± 25		
Load Transient	VLOADTRAN_LDO	$\mathrm{I}_{\text {LOUT }}=0 \mathrm{~mA}$ to 10 mA , 200ns rise time		100		mV
		LLOUT $=0 \mathrm{~mA}$ to 100 mA , 200ns rise time	200			
Passive Discharge Pulldown Resistance	RPDL_LDO		4	10	18	k Ω
Active Discharge Current	$\mathrm{I}_{\text {ACTDL_LDO }}$		5	20	40	mA
Switch Mode Resistance	RON_LDO	$\mathrm{V}_{\text {LIN }}=1.8 \mathrm{~V}$, $\mathrm{I}_{\text {LOUT }}=50 \mathrm{~mA}$			1	Ω
		$\mathrm{V}_{\text {LIN }}=1.2 \mathrm{~V}$, $\mathrm{I}_{\text {LOUT }}=5 \mathrm{~mA}$			3	
Turn-On Time	ton_LDO	ILOUT $=0 \mathrm{~mA}$, time from 10% to 90% of final regulation value		0.95		ms
		LOUT $=0 \mathrm{~mA}$, time from 10% to 90% of $\mathrm{V}_{\text {LIN }}$, Switch mode		1.8		
Short-Circuit Current Limit	ISHRT_LDO	$\mathrm{V}_{\text {LOUT }}=$ GND		380		mA
		$V_{\text {LOUT }}=$ GND, Switch mode		370		

Electrical Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{BIN}}=\mathrm{V}_{\mathrm{LIN}}=\mathrm{V}_{\mathrm{HVIN}}=\mathrm{V}_{\mathrm{SWIN}}=2.7 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, all registers in their default state, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Thermal-Shutdown Threshold	tshdn_LDO	T_{J} rising		150		${ }^{\circ} \mathrm{C}$
Thermal-Shutdown Hysteresis	tSHDN_HYST_LDO			21		${ }^{\circ} \mathrm{C}$
Output Noise	OUT ${ }_{\text {NOISE_LDO }}$	10 Hz to $100 \mathrm{kHz}, \mathrm{V}_{\mathrm{LIN}}=5 \mathrm{~V}$, $\mathrm{V}_{\text {LOUT }}=3.3 \mathrm{~V}$		150		$\mu \mathrm{V}_{\text {RMS }}$
		10 Hz to $100 \mathrm{kHz}, \mathrm{V}_{\mathrm{LIN}}=5 \mathrm{~V}$, $\mathrm{V}_{\text {LOUT }}=2.5 \mathrm{~V}$		125		
		10 Hz to $100 \mathrm{kHz}, \mathrm{V}_{\mathrm{LIN}}=5 \mathrm{~V}$, $\mathrm{V}_{\text {LOUT }}=1.2 \mathrm{~V}$		90		
		10 Hz to $100 \mathrm{kHz}, \mathrm{V}_{\mathrm{LIN}}=5 \mathrm{~V}$, $\mathrm{V}_{\text {LOUT }}=0.9 \mathrm{~V}$		80		
BATTERY IMPEDANCE MEASUREMENT						
SWOUT Allowed Supply Range	$V_{\text {SWOUT }}$		2		5.5	V
SWOUT UVLO	UVLOSWOUT	Falling edge	1.92		2	V
SWOUT UVLO Hysteresis	UVLOHYST	Hysteresis		30		mV
$V_{\text {CC }}$ Impedance Test Current Range	IBIM_CUR	Programmable current source with step change of $2 x$	250		8000	$\mu \mathrm{A}$
$\mathrm{V}_{\text {CC }}$ Impedance Test Current Accuracy	IBIM_ACC	$\mathrm{V}_{\mathrm{CC}}>1.2 \mathrm{~V}$	-10		10	\%
$V_{\text {CC }}$ Input Divider Resistance	Rvcc	$\mathrm{V}_{\text {CC }}$ measure enabled		1.5		$\mathrm{M} \Omega$
Measurable V_{CC} Voltage Range	VCC_FS	Allowed V_{CC} voltages range for SAR ADC operation	1.2		3.6	V
$V_{C C}$ Voltage Resolution LSB	VCC_LSB			10.2		mV
Worst-Case Accuracy of Single $V_{C C}$ Measurement	VCC_ACC	$\mathrm{V}_{\mathrm{CC}}=1.2 \mathrm{~V}$	-72		+72	mV
		$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$	-100		+100	
Worst-Case Accuracy of Differential V_{CC} Measurement	VCC_ACC_DIFF	$\mathrm{V}_{\mathrm{CC} 1}-\mathrm{V}_{\mathrm{CC} 2}=100 \mathrm{mV}$	-22		+22	\%
		$\mathrm{V}_{\mathrm{CC} 1}-\mathrm{V}_{\mathrm{CC} 2}=1.0 \mathrm{~V}$	-3.5		+3.5	
$V_{C C}$ Voltage Wait Time Accuracy	twAIT_ACC	$10 \mathrm{~ms}, 100 \mathrm{~ms}$, 1s programmable twait	-10		+10	\%
SAR ADC $\mathrm{V}_{\text {Cc }}$ Voltage Conversion Time	t ${ }^{\text {conv }}$	Actual full V_{CC} measurement time is twAIT $^{+} \mathrm{t}_{\mathrm{CONV}}$		120		$\mu \mathrm{s}$

Electrical Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{BIN}}=\mathrm{V}_{\mathrm{LIN}}=\mathrm{V}_{\mathrm{HVIN}}=\mathrm{V}_{\mathrm{SWIN}}=2.7 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, all registers in their default state, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
MONITOR MULTIPLEXER						
SWIN To MON Switch Resistance	$\mathrm{R}_{\text {MON_SWIN }}$	$\mathrm{V}_{\text {SWIN }}>1.8 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=2 \mathrm{~mA}$		80	120	Ω
SWOUT/BIN/HVIN/ HVOUT/LIN To MON Switch Resistance	$\mathrm{R}_{\text {MON_HV }}$	Sensed pin voltage $>1.8 \mathrm{~V}$, $\text { ILOAD }=500 \mu \mathrm{~A}$			400	Ω
LOUT/BOUT To MON Switch Resistance	$\mathrm{R}_{\text {MON_LV }}$	Sensed pin voltage $>0.9 \mathrm{~V}$, $I_{\text {LOAD }}=500 \mu \mathrm{~A}$			500	Ω
BBM Time	$t_{\text {BBM }}$	Anytime MONCtr[2:0] changed		80		$\mu \mathrm{s}$
Pulldown Resistance	$\mathrm{R}_{\text {MON_PD }}$	MONHiZ $=0$		100		k ת
UVLO/POR						
Input Voltage Range	V VCC		1.8		5.5	V
BIN UVLO Threshold Rising	$\mathrm{V}_{\text {TH_BIN_RISE }}$		1.68	1.73	1.77	V
BIN UVLO Threshold Falling	V ${ }_{\text {TH_BIN_FALLING }}$		1.66	1.71	1.75	V
LIN UVLO Threshold Rising	$\mathrm{V}_{\text {TH_LIN_RISE }}$		1.64	1.68	1.72	V
LIN UVLO Threshold Falling	VTH_LIN_FALLING		1.62	1.66	1.7	V
POR Falling	VTH_POR_FALLING	Seal mode	0.76	1.21		V
		No seal mode	1.55	1.66	1.77	
POR Rising	V ${ }_{\text {TH_POR_RISING }}$	Seal mode		1.27	1.71	V
		No seal mode	1.58	1.69	1.8	
DIGITAL SIGNALS ($\mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}$ to 5.5 V , unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$.)						
Input Logic-High (SDA, SCL,SWEN,KIN, BEN,MPC,LEN,HVEN)	V_{IH}	No seal mode	1.4			V
Input Logic-Low (SDA, SCL,SWEN,KIN, BEN,MP,LEN,HVEN)	$\mathrm{V}_{\text {IL }}$	No seal mode			0.45	V
		No seal mode, $\mathrm{V}_{\mathrm{CC}} \geq 2.7 \mathrm{~V}$			0.5	
Input Logic-High, Seal Mode (SDA, SCL, $\overline{\text { KIN }}$, MPC)	$\mathrm{V}_{\mathrm{IH} \text { _SEAL }}$	Seal mode	4.1			V
		Seal mode, $\mathrm{V}_{\mathrm{CC}} \geq 2.7 \mathrm{~V}$	2.2			V

Electrical Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{BIN}}=\mathrm{V}_{\mathrm{LIN}}=\mathrm{V}_{\mathrm{HVIN}}=\mathrm{V}_{\mathrm{SWIN}}=2.7 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, all registers in their default state, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Input Logic-Low, Seal Mode (SDA, SCL, KIN, MPC)	VIL_SEAL	Seal mode			0.5	V
Output Logic-Low (SDA, RST, KOUT)	V_{OL}	$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$			0.4	V
SCL Clock Frequency	$\mathrm{f}_{\text {SCL }}$		0		400	kHz
$\overline{\mathrm{KIN}}$ Pullup Resistance	RKIN			210		k Ω
Bus Free Time Between a Stop and Start Condition	${ }^{\text {t }}$ BUF		1.3			$\mu \mathrm{s}$
Start Condition (Repeated) Hold Time	${ }^{\text {thD }}$:STA	(Note 2)	0.6			$\mu \mathrm{s}$
Low Period of SCL Clock	tow		1.3			$\mu \mathrm{s}$
High Period of SCL Clock	${ }^{\text {thigh }}$		0.6			$\mu \mathrm{s}$
Setup Time for a Repeated Start Condition	tsu:STA		0.6			$\mu \mathrm{s}$
Data Hold Time	$\mathrm{t}_{\mathrm{HD}: \text { DAT }}$	(Note 3)	0		0.9	$\mu \mathrm{s}$
Data Setup Time	tSU:DAT		100			ns
Setup Time for Stop Condition	tsu:Sto		0.6			$\mu \mathrm{S}$
Spike Pulse Widths Suppressed by Input Filter	${ }^{\text {tSP }}$		50			ns

Note 1: All devices are 100% production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Limits over the operating temperature range are guaranteed by design.
Note 2: $\mathrm{f}_{\mathrm{SCL}}$ must meet the minimum clock low time plus the rise/fall times.
Note 3: The maximum $t_{\text {HD: }}$ DAT has to be met only if the device does not stretch the low period (tow) of the SCL signal.

Typical Operating Characteristics

$\left(\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{BIN}}=\mathrm{V}_{\mathrm{LIN}}=\mathrm{V}_{\mathrm{HVIN}}=\mathrm{V}_{\mathrm{SWIN}}=2.7 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, all registers in their default state, unless otherwise noted. $)$

Typical Operating Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{BIN}}=\mathrm{V}_{\mathrm{LIN}}=\mathrm{V}_{\mathrm{HVIN}}=\mathrm{V}_{\mathrm{SWIN}}=2.7 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, all registers in their default state, unless otherwise noted. $)$

Bump Configurations

Bump Description

BUMP		NAME	
MAX14720	MAX14750		
A1	A1	BIN	Buck Regulator Input (must be connected to HVIN on the board). Bypass with a $1 \mu \mathrm{~F}$ capacitor to GND.
A2	A2	BLX	Buck Regulator Switch
A3	A3	BOUT	Buck Regulator Output. Bypass with a 10 μ F capacitor to GND.
A4	A4	LIN	LDO Input. Bypass with a 1 μ F capacitor to GND.
A5	A5	LOUT	LDO Output. Bypass with a 1 μ F capacitor to GND.
B1	B1	MON	Monitor Multiplexer Output
B2, B3, C2, C3, D2	B2, B3, C2, C3, D2	GND	Ground
B4	B4	VCC	Power Supply Input
B5	B5	SWIN	Power Switch Input. SWIN $\leq V_{C C}$
C1	C1	SDA	Open-Drain I²C Serial Data Input/Output
C4	-	MPC	Multipurpose Control Input
-	C4	BEN	Active-High Buck Regulator Enable Input

Bump Description (continued)

BUMP		NAME	FUNCTION
MAX14720	MAX14750		
C5	C5	SWOUT	Power Switch Output. Bypass with a $100 \mu \mathrm{~F}$ capacitor to GND for battery impedance measurement.
D1	D1	SCL	${ }^{12} \mathrm{C}$ Serial Clock
D3	-	$\overline{\mathrm{KIN}}$	KEY Input. Active-low button monitor with internal $210 \mathrm{k} \Omega$ pullup.
-	D3	SWEN	Active-High Power Switch Enable Input
D4	-	$\overline{\mathrm{RST}}$	Active-Low, Open-Drain Reset Output
-	D4	LEN	Active-High Linear Regulator Enable Input
D5	D5	CAP	Internal Power Decoupling. Bypass with a $0.1 \mu \mathrm{~F}$ capacitor to GND.
E1	E1	HVOUT	Buck-Boost Regulator Output. Bypass with a $10 \mu \mathrm{~F}$ capacitor to GND.
E2	E2	HVOLX	Buck-Boost Regulator Boost Switch
E3	E3	HVILX	Buck-Boost Regulator Buck Switch
E4	E4	HVIN	Buck-Boost Regulator Input (Must be Connected to BIN on the Board). Bypass with a $1 \mu \mathrm{~F}$ capacitor to GND.
E5	-	KOUT	KEY Output. Active-low, open-drain buffered copy of $\overline{\mathrm{KIN}}$.
-	E5	HVEN	Active-High Buck-Boost Regulator Enable Input

Note: All capacitance values listed in this document refer to effective capacitance. Be sure to specify capacitors that will meet these requirements under typical system operating conditions taking into consideration the effects of voltage and temperature.

Block Diagram

Detailed Description

Power Regulation

The MAX14720/MAX14750 include a buck-boost regulator, a synchronous buck regulator, a low quiescent current linear regulator, and a power switch with integrated battery monitoring. Burst mode operation of the switching regulators provides excellent light-load efficiency and allows the switching regulators to run continuously without significant energy cost.
The buck-boost regulator in the devices is suitable for applications (such as low-power display biasing) that need the voltage present continuously while running from a battery. The buck-boost regulator can also operate in a current-limited mode to reduce current surges to the supply. The current-limiting is implemented by dividing down the frequency of the switching and is dependent on the ratio of the input-to-output voltage. Step-down operation is not allowed when current-limiting is active.

UVLO

In addition to the internal power-on-reset (POR) circuit, the devices also have two UVLO circuits that monitor the voltages on BIN and LIN pin to ensure that input voltages are sufficient for proper operation. It is required that the boost and buck-boost are powered from the same voltage so they share a UVLO on the BIN pin. The LDO has its own UVLO on the LIN pin. The UVLO circuits are disabled when the blocks are not enabled to reduce the quiescent current. The devices provide the ability to select which of the two UVLOs are used so that applications with BIN and LIN tied to the
same supply can share a single UVLO to reduce quiescent current. The selection is made in the UVLOCfg register and the effects of the different settings are shown in the Table 1. In the MAX14720, if there is a fault in a block that is enabled by the sequencer (every _Seq[2:0] option except 000, 110 or 111) the part will transition to the shutdown state. The device then waits for the fault to clear before beginning the power on sequence. A fault is any condition that causes the block to turn off when it should be enabled, such as a UVLO condition or thermal shutdown. On MAX14720 versions with BatZUVLO enabled and SWSeq $=001$ (always on), the load switch is kept on even in the event of a fault. This allows the device to recover from UVLO fault conditions when it is connected as shown in Figure 11. On devices with these options, in the case of a fault during the power sequencing, a retry counter is incremented. If seven failures in a row occur, retries are aborted and the device returns to OFF mode.

Output Discharge

The regulators include circuitry to discharge their outputs. Active discharge applies a current sink, while passive discharge applies a load resistor. The active discharge is enabled during hard reset, or for 10 ms as the part enters the off/seal mode. It can also be activated in the on state by a register bit when the regulator is disabled. Passive discharge is applied in the off/seal mode if the GlbPasDsc bit is set and can also be applied in the on state by a register bit when the regulator is disabled.

Table 1. UVLO Configuration

UVLOCfg	BBBUVLOsel	LDOUVLOsel	BIN UVLO	LIN UVLO
0×00	LIN	LIN	Disabled	Enabled
0×01	LIN	BIN	Enabled	Enabled
0×02	BIN	LIN	Enabled	Enabled
0×03	BIN	BIN	Enabled	Disabled

Power On/Off and Reset Control

The MAX14750 provides individual enable pins for each of the primary functions, while the MAX14720 includes a push-button monitor and sequencing controller. Figure 1 shows the basic flow diagram for the power-management control inside the MAX14720. Each primary function of the MAX14720 can be automatically enabled by the sequencing controller. The functions can default to be controlled by the ${ }^{2} \mathrm{C}$ configuration registers. The default state is determined by the factory configuration. See $\underline{I} \underline{\underline{C}}$ Register Descriptions section for more information.
When the device begins the shutdown process, reset is driven low, all functions are disabled and outputs are actively discharged. Then, 10 ms later, the device will be in the off state (seal mode) where all functions are disabled except for the power button monitor.

Power Sequencing

The sequencing of the voltage regulators during poweron is configurable. Each regulator can be configured to be turned on at one of four points during the power-on process. The four points are: $\mathrm{t}_{\mathrm{BOOT}}$ after the power-on event, after the RST signal is released, or at two points in between. The two points in between are fixed proportionally to the duration of the POR process, but the overall time of the reset delay is configurable at $80 \mathrm{~ms}, 120 \mathrm{~ms}, 220 \mathrm{~ms}$, and 420 ms . (Note that the actual turn-on time of some converters may be limited by the soft-starting of the output.) Figure 3 shows the timing relationship. Additionally, the

Figure 1. Power State Diagram for MAX14720
regulators can be preselected to default off and can be turned on with an $\mathrm{I}^{2} \mathrm{C}$ command after reset is released.

Battery Impedance Measurement (MAX14720, BatZUVLO Enabled Only)

The MAX14720 contains circuitry to measure the impedance of the power supply. To perform this measurement, SWIN must be connected to V_{CC}, with no capacitor present on the battery-side; all loads draw their power from the power-switch output (see Typical Application Circuits).
By default, the power switch is configured with a soft-start current limit that prevents potential high current drawn from the battery. This soft-start lasts 60 ms after the power switch is turned on.
During battery measurement, the impedance measurement circuitry will open the power switch and record the voltage at the input to the switch before and after a current load is applied. During the measurement, the system must rely on the energy stored in the capacitor attached to the output of the switch for operation. If the SWOUT voltage falls below SWOUT UVLO threshold, the battery measurement is immediately aborted and the power switch closes.

Figure 2. BatZUVLO enabled for MAX14720

The parameters of the current load and the timing of the pulse are specified in registers BatTime(0x0D) and BatCfg(0x0E) when the measurement is requested and the results are presented in registers BatV(0x0F), BatOCV(0x10), and BatLCV(0x11) (see Figure 4). Battery impedance measurement is only available on devices with BatZUVLO enabled (see Table 27).

${ }^{2}{ }^{2} \mathrm{C}$ Interface

The devices use the two-wire ${ }^{2} \mathrm{C}$ interface to communicate with the host microcontroller. The configuration settings and status information provided through this interface are detailed in the register descriptions.
${ }^{12}$ C Addresses
The registers of the devices are accessed through the slave address of 010101Ax (A is configurable by OTP).

Figure 3. Reset Sequence Programming (MAX14720)

Figure 4. Battery Impedance Measurement
${ }^{12}{ }^{2}$ C Register Map

[^0]
${ }^{12} \mathrm{C}$ Register Descriptions

Table 2. Chipld Register (0×00)

ADDRESS:	$\mathbf{0 x 0 0}$ (Read-Only)							
BIT	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
NAME	ChipId[7:0]							
Chip_Id[7:0]	Chip_Id[7:0] bits show information about the version of the MAX14720/MAX14750.							

Table 3. ChipRev Register (0x01)

ADDRESS:	$\mathbf{0 \times 0 1}$ (Read-Only)							
BIT	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
NAME	ChipRev[7:0]							
ChipRev[7:0]	ChipRev[7:0] bits show information about the revision of the MAX14720/MAX14750 silicon.							

Table 4. BoostCDiv Register (0x03)

ADDRESS:	0x03							
BIT	7	6	5	4	3	2	1	0
NAME	ClkDivEn				ClkDiven ClkDivSet[6:0]			
ClkDivEn	Boost Current-Limited Output Mode Enable This allows the boost regulator to be operated in a current limited output mode. 0: Normal Operation, Full Output Current Capability 1: Divided Clock Current Limited Mode When the clock divider is enabled, the boost is operated with a fixed peak current limit and programmable frequency. The peak current is set by BoostISet[2:0] and the switching frequency is determined by CIkDivSet[6:0]. The regulator will stop switching when the voltage is above the set point and will only run when the voltage is below the output setting. This mode can only be enabled once the output voltage is set higher than the input voltage.							
CIkDivSet[6:0]	Current-Limited Boost Clock Divider Setting When the current limited mode is enabled, the frequency of the boost regulator in current limited mode will be 							

Table 5. BoostlSet Register (0x04)

Table 6. BoostVSet Register (0x05)

ADDRESS:	0x05							
BIT	7	6	5	4	3	2	1	0
NAME	-	-	-	BoostVSet[4:0]				
BoostVSet[4:0]	Boost Output Voltage Setting. This setting is internally latched and can change only when boost is disabled. 2.5 V to 5.0 V , linear scale, 100 mV increments $\begin{aligned} & 000000=2.5 \mathrm{~V} \\ & 000001=2.6 \mathrm{~V} \end{aligned}$... $\begin{aligned} & 011001=5.0 \mathrm{~V} \\ & >011001=5.0 \mathrm{~V} \end{aligned}$							

Table 7. BoostCfg Register (0x06)

ADDRESS:	0x06							
BIT	7	6	5	4	3	2	1	0
NAME	BoostSeq[2:0] (Read-only)			BoostEn[1:0]		-	BoostEMI	BoostInd
BoostSeq[2:0]	Boost Enable Configuration (Read-Only) $000=$ Disabled 001 = Reserved $010=$ Enabled at 0\% of Boot/POR Process Delay Control 011 = Enabled at 25\% of Boot/POR Process Delay Control $100=$ Enabled at 50% of Boot/POR Process Delay Control 101 = Reserved 110 = Controlled by HVEN (MAX14750) 111 = Controlled by BoostEn [1:0] after 100\% of Boot/POR Process Delay Control (MAX14720)							
BoostEn[1:0]	Boost Enable Configuration (effective only when BoostSeq[2:0] == 111) $00=$ Disabled. Active discharge behavior depends on BoostActDsc. $01=$ Enabled $10=$ Enabled when MPC is high 11 = Reserved							
BoostEMI	Boost EMI reduction. Dampens ringing of the inductor when in discontinuous mode $0=\mathrm{EMI}$ damping active (improve EMI) 1 = EMI damping disabled (improve Efficiency)							
BoostInd	Boost Inductance Select $1=$ Inductance is $3.3 \mu \mathrm{H}$ $0=$ Inductance is $4.7 \mu \mathrm{H}$							

Table 8. BuckVSet Register (0x07)

ADDRESS:	0x07							
BIT	7	6	5	4	3	2	1	0
NAME	-	-						
BuckVSet[5:0]	Buck Output Voltage Setting This setting is internally latched and can change only when buck is disabled. 1.0 V to 2.0 V , linear scale, 25 mV increments $\begin{aligned} & 000000=1.000 \mathrm{~V} \\ & 000001=1.025 \mathrm{~V} \end{aligned}$ $\begin{aligned} & 101000=2.0 \mathrm{~V} \\ & >101000=2.0 \mathrm{~V} \end{aligned}$							

Table 9. BuckCfg Register (0x08)

ADDRESS:	0x08							
BIT	7	6	5	4	3	2	1	0
NAME	BuckSeq[2:0] (Read-only)			BuckEn[1:0]		BuckMd[1:0]		BuckFst
BuckSeq[2:0]	Buck Enable Configuration (Read-Only) $000=$ Disabled 001 = Reserved $010=$ Enabled at 0\% of Boot/POR Process Delay Control 011 = Enabled at 25% of Boot/POR Process Delay Control $100=$ Enabled at 50% of Boot/POR Process Delay Control 101 = Reserved $110=$ Controlled by BEN (MAX14750) 111 = Controlled by BuckEn [1:0] after 100\% of Boot/POR Process Delay Control							
BuckEn[1:0]	Buck Enable Configuration (effective only when BuckSeq[2:0] == 111) $00=$ Disabled. Active discharge behavior depends on BuckActDsc. 01 = Enabled $10=$ Enabled when MPC is high 11 = Reserved							
BuckMd[1:0]	Buck Mode Select $00=$ Burst mode 01 = Forced PWM mode 10 = Forced PWM mode when MPC is high 11 = Reserved							
BuckFst	Buck Fast Start $0=$ Normal startup current limit 1 = Double the startup current to reduce the startup time by half							

Table 10. BuckISet Register (0x09)

ADDRESS:	0x09							
BIT	7	6	5	4	3	2	1	0
NAME	BuckISet[2:0]			BuckCfg	BuckInd	BuckHysOff	BuckMinOT	BuckInteg
BuckISet[2:0]	Buck Peak Current Limit Setting 000: 50mA 001: 100mA 010: 150 mA 011: 200 mA 100: 250 mA 101: 300 mA 110: 350 mA 111: 400 mA							
BuckCfg	Buck Configuration $0=$ set to 0 for burst mode 1 = set to 1 for FPWM mode							
BuckInd	Buck Inductance Select $0=$ Inductance is $2.2 \mu \mathrm{H}$ 1 = Inductance is $4.7 \mu \mathrm{H}$							
BuckHysOff	Buck Hysteresis Off 0 = Enable comparator hysteresis 1 = Disable comparator hysteresis (recommended to reduce voltage ripple)							
BuckMinOT	Buck Minimum On-Time 0 = Enable deglitch delay on comparator for better efficiency 1 = Disable deglitch delay on comparator to minimize voltage ripple							
BuckInteg	Buck Integrate $0=$ Helps stabilize the buck regulator for high currents with small output capacitor $1=$ Better load regulation at high current (recommended for output capacitance $>6 \mu \mathrm{~F}$)							

Table 11. LDOVSet Register (0x0A)

ADDRESS:	0x0A							
BIT	7	6	5	4	3	2	1	0
NAME				LDOVSet[4:0]				
LDOVSet[4:0]	LDO Output Voltage Setting 0.9 V to 4 V , linear scale, 100 mV increments$\begin{aligned} & 00000=0.9 \mathrm{~V} \\ & 00001=1.0 \mathrm{~V} \end{aligned}$$10000=2.5 \mathrm{~V}$$11111=4.0 \mathrm{~V}$							

Table 12. LDOCfg Register (0x0B)

ADDRESS:	0x0B							
BIT	7	6	5	4	3	2	1	0
NAME	LDOSeq[2:0] (Read-Only)			LDOPasDsc	LDOActDsc	LDOEn[1:0]		LDOMode
LDOSeq[2:0]	LDO Enable Configuration (Read-Only) $000=$ Disabled 001 = Enabled always when BAT/SYS is present $010=$ Enabled at 0\% of Boot/POR Process Delay Control 011 = Enabled at 25\% of Boot/POR Process Delay Control $100=$ Enabled at 50% of Boot/POR Process Delay Control 101 = Disabled $110=$ Controlled by LEN (MAX14750) 111 = Controlled by LDOEn[1:0] after 100\% of Boot/POR Process Delay Control							
LDOPasDsc	LDO Passive Discharge Control 0 : LDO output will be discharged only entering off and hard-reset modes. 1: LDO output will be discharged only entering off and hard-reset modes and when the enable is low.							
LDOActDsc	LDO Active Discharge Control 0 : LDO output will be actively discharged only entering off and hard-reset modes. 1: LDO output will be actively discharged only entering off and hard-reset modes and when the enable is low.							
LDOEn[1:0]	LDO Enable Configuration (effective only when LDOSeq[2:0] == 111) $00=$ Disabled 01 = Enabled $10=$ Enabled when MPC is high 11 = Reserved							
LDOMode	LDO Mode Control 0 = Normal LDO operating mode 1 = Load switch mode. FET is either fully on or off depending on the state of LDOEn. When FET is on, the output is unregulated and is not affected by UVLO's control block. This setting is internally latched and can change only when the LDO is disabled.							

Table 13. SwitchCfg Register (0x0C)

ADDRESS:	0x0C							
BIT	7	6	5	4	3	2	1	0
NAME	SWSeq[2:0] (Read-Only)			-	-	SWEn[1:0]		SWSoftStart
SWSeq[2:0]	SW Enable Configuration (Read-Only) $000=$ Disabled 001 = Enabled always when BAT/SYS is present $010=$ Enabled at 0% of Boot/POR Process Delay Control 011 = Enabled at 25% of Boot/POR Process Delay Control $100=$ Enabled at 50% of Boot/POR Process Delay Control 101 = Disabled 110 = Controlled by SWEN (MAX14750) 111 = Controlled by SWEn[1:0] after 100\% of Boot/POR Process Delay Control							
SWEn	SW Enable Configuration (effective only when SWSeq[2:0] == 111) $00=$ Disabled 01 = Enabled $10=$ Enabled when MPC is high 11 = Reserved							
SWSoftStart	SW SoftStart $0=$ No soft-start is present when the switch is enabled. 1 = Current limit of 25 mA (typ) is ensured for 60 ms when the switch is enabled.							

Table 14. BatTime Register (0x0D)

ADDRESS:	0x0D							
BIT	7	6	5	4	3	2	1	0
NAME	-	-						
BCVTm[1:0]	Battery Cell Voltage Timing 00: Skip battery measurement 01: Take battery measurement after 10 ms delay 10: Take battery measurement after 100 ms delay 11: Take battery measurement after 1000 ms delay							
OCVTm[1:0]	Battery Open Cell Voltage Timing If this step is skipped, LCV measurement will be taken with switch closed 00: Skip OCV measurement 01: Take OCV measurement after 10 ms delay 10: Take OCV measurement after 100 ms delay 11: Take OCV measurement after 1000 ms delay							
LCVTm[1:0]	Battery Loaded Cell Voltage Timing 00: Skip LCV measurement 01: Take LCV measurement after 10 ms delay 10: Take LCV measurement after 100 ms delay 11: Take LCV measurement after 1000 ms delay							

Table 15. BatCfg Register (0x0E)

ADDRESS:	0x0E							
BIT	7	6	5	4	3	2	1	0
NAME	BIA	BIMAbort	-	-	LcvDly2Skip		pC	
BIA	Battery Impedance Active Write 1 to start battery impedance measurement. If the measurement is already running, the write is ignored. Bit will remain high until the measurement is completed. 0 : Battery impedance measurement is not ongoing 1: Battery impedance measurement is ongoing							
BIMAbort	Battery Impedance Measurement Skip Write 1 to immediately abort the battery impedance measurement 0 : Battery impedance measurement is aborted 1: Battery impedance measurement is not aborted yet							
LcvDly2Skip	Write 1 to skip the second delay time (equal again to LCVTm) after LCV Measurement is taken. This second delay time allows V_{CC} to recover its unloaded value before closing the power switch again. 0 : Wait second delay time 1: Skip second delay time							
BatImpCur [2:0]	Battery Impedance Current 000: 0 001: $250 \mu \mathrm{~A}$ 010: $500 \mu \mathrm{~A}$ 011: 1 mA 100: 2 mA 101: 4 mA 110: 8 mA 111: Reserved							

Table 16. BatV Register (0x0F)

ADDRESS:	0x0F (Read-Only)								
BIT	7	7	6	5	4	3	2	1	0
NAME	BCV[7:0]								
BCV[7:0]	Battery Voltage Measurement Result 8-bit battery voltage measurement: $\mathrm{V}_{\mathrm{CC}}=[2.6$ * $(\mathrm{BCV}[7: 0] / 255)+1.1] \mathrm{V}$ If $\mathrm{BCVTm}[2: 0]=00, \mathrm{BCV}[7: 0]=00000000$. If error occurs or the measurement is aborted, $\mathrm{BCV}[7: 0]=11111111$.								

Table 17. BatOCV Register (0x10)

ADDRESS:	0x10 (Read-Only)								
BIT	7	7	6	5	4	3	2	1	0
NAME	OCV[7:0]								
OCV[7:0]	Battery Voltage Measurement Result 8 -bit battery voltage measurement: $\mathrm{V}_{\mathrm{CC}}=[2.6 \times(\mathrm{OCV}[7: 0] / 255)+1.1] \mathrm{V}$ If OCVTm[2:0] $=00, \mathrm{OCV}[7: 0]=00000000$. If error occurs or the measurement is aborted, $\mathrm{OCV}[7: 0]=11111111$.								

Table 18. BatLCV Register (0x11)

ADDRESS:	0x11 (Read-Only)							
BIT	7	6	5	4	3	2	1	0
NAME	LCV[7:0]							
LCV[7:0]	Battery Voltage Measurement Result 8 bit battery voltage measurement: $\mathrm{V}_{\mathrm{CC}}=[2.6 \times(\mathrm{LCV}[7: 0] / 255)+1.1] \mathrm{V}$ If LCVTm[2:0] $=00, \mathrm{BCV}[7: 0]=00000000$. If error occurs or the measurement is aborted, LCV[7:0] =1111 1111.							

Table 19. MONCfg Register (0×19)

ADDRESS:	0x19							
BIT	7	6	5	4	3	2	1	0
NAME	MonEn	-	-	-	MONtHiZ		Ct	
MonEn	Monitor Enable $0=$ Monitor function disabled $1=$ Monitor function enabled							
MONtHiZ	MON OFF MODE Condition $0=$ Pulled Low by a 100k Pulldown Resistor $1 \text { = Hi-Z }$							
MONCtr[2:0]	MON Pin Source Selection $000=$ MON connected to SWIN $001=$ MON connected to SWOUT $010=$ MON connected to BIN $011=$ MON connected to BOUT $100=$ MON connected to HVIN $101=$ MON connected to HVOUT $110=$ MON connected to LIN $111=$ MON connected to LOUT							

Table 20. BootCfg Register (0x1A)

ADDRESS:	0x1A (Read-Only)							
BIT	7	6	5	4	3	2	1	0
NAME					SftRstCfg	PFNPUDCfg		
PwrRstCfg [4:0]	0000: Pin Controlled (MAX14750) 0110: Push-Button Monitor (MAX14720)							
SftRstCfg	Soft Reset Register Default $0=$ Registers do not reset to default values on soft reset 1 = Registers reset to default values on soft reset							
PFNPUDCfg	$\overline{\mathrm{KIN}}$ Pullup/Pulldown Configuration $0=$ Pullups and pulldowns on control lines disabled 1 = Selective pullups and pulldowns enabled on KIN pin							
BootDly[1:0]	Boot/POR Process treset Delay Control$\begin{aligned} & 00=80 \mathrm{~ms} \\ & 01=120 \mathrm{~ms} \\ & 10=220 \mathrm{~ms} \\ & 11=420 \mathrm{~ms} \end{aligned}$							

Table 21. PinStat Register (0x1B)

| ADDRESS: | 0x1B (Read-Only) | | | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BIT | $\mathbf{7}$ | $\mathbf{6}$ | $\mathbf{5}$ | $\mathbf{4}$ | $\mathbf{3}$ | $\mathbf{2}$ | $\mathbf{1}$ | $\mathbf{0}$ |
| NAME
 (MAX14720) | - | - | - | - | $\overline{\text { KIN }}$ | $\overline{\text { KOUT }}$ | MPC | $\overline{\text { RST }}$ |
| NAME
 (MAX14750) | - | - | - | - | SWEN | HVEN | BEN | LEN |
| KIN, $\overline{\text { KOUT, }}$
 MPC, $\overline{\text { RST, }}$
 SWEN, HVEN,
 BEN, LEN | Input State
 $0=$ Pin low
 $1=$ Pin high | | | | | | | |

Table 22. BBBExtra Register (0x1C)

ADDRESS:	0x1C							
BIT	7	6	5	4	3	2	1	0
NAME	BoostHysOff	BoostPasDsc	BoostActDsc		0	BuckPasDsc	BuckActDsc	BuckFScl
BoostHysOff	Boost Hysteresis Off 0 = Enable comparator hysteresis 1 = Disable comparator hysteresis (recommended to reduce voltage ripple)							
BoostPasDsc	Boost Passive Discharge Control 0 : Boost output will be discharged only when entering off and hard-reset modes. 1: Boost output will be discharged only when entering off and hard-reset modes and when BoostEn is set to 00 .							
BoostActDsc	Boost Active Discharge Control 0 : Boost output will be discharged only when entering off and hard-reset modes. 1: Boost output will be discharged only when entering off and hard-reset modes and when BoostEn is set to 00 .							
BuckPasDsc	Buck Passive Discharge Control 0 : Buck output will be discharged only when entering off and hard-reset modes. 1: Buck output will be discharged only when entering off and hard-reset modes and when BuckEn is set to 00 .							
BuckActDsc	Buck Active Discharge Control 0: Buck output will be discharged only when entering off and hard-reset modes. 1: Buck output will be discharged only when entering off and hard-reset modes and when BuckEn is set to 00 .							
BuckFScl	Buck Force FET scaling (it reduces I_{Q} by lowering the nMOS power to 20% of the nominal value) 0 : FET Scaling only enabled during the buck turn-on sequence 1: FET Scaling enabled during the buck turn-on sequence and also in the buck active state.							

Table 23. HandShk Register (0x1D)

ADDRESS:	0x1D (Read-Only)							
BIT	7	6	5	4	3	2	1	0
NAME	StartOff	GlbPasDsc	-	-	-	-	-	StayOn
StartOff	Start In Off 1: The device will start in the off mode. 0 : The device begins the power-on sequence after a V_{CC} power on reset.							
GlbPasDsc	Global Passive Discharge 0 : Passive discharge loads are disabled in off mode. 1: Passive discharge loads are enabled in off mode.							
StayOn	Processor Handshake This bit is used to ensure that the processor booted correctly. This bit must be set within 5 s of power-on to prevent the part from shutting down and returning to the power-off condition. This bit has no effect after being set. $0=$ Shutdown 5 s after power-on 1 = Stay on							

Table 24. UVLOCfg Register (0x1E)

ADDRESS:	$\mathbf{0 \times 1 E}$							
BIT	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
NAME	-	-	-	-	-	-	BBBUVLOsel (Read Only)	LDOUVLOsel
BBBUVLOsel	Buck/Buck-Boost UVLO Select 0: Buck and buck-boost are turned off/on when $V_{\text {LIN }}$ is less/greater than the LIN UVLO threshold, respectively. 1: Buck and buck-boost are turned off/on when $V_{\text {BIN }}$ is less/greater than the BIN UVLO threshold, respectively.							
LDOUVLOsel	LDO UVLO Select 0: LDO is turned off/on when $V_{\text {LIN }}$ is less/greater than the LIN UVLO threshold, respectively. 1: LDO is turned off/on when $V_{\text {BIN }}$ is less/greater than the BIN UVLO threshold, respectively.							

Table 25. PWRCFG Register (0x1F)

ADDRESS:	0x1F							
BIT	7	6	5	4	3	2	1	0
NAME	PWROFFCMD[7:0]							
PWROFFCMD [7:0]	Power-Off Command Writing $0 \times B 2$ to this register will place the part in the off state/seal mode. Waking up the device from this mode requires a low pulse on $\overline{\mathrm{KIN}}$. All other codes = Do nothing							

I2C Interface

The MAX14720/MAX14750 contain an I2C-compatible interface for data communication with a host controller (SCL and SDA). The interface supports a clock frequency of up to 400 kHz . SCL and SDA require pullup resistors that are connected to a positive supply.

Start, Stop, And Repeated Start Conditions

When writing to the MAX14720/MAX14750 using ${ }^{2}$ C ${ }^{2}$, the master sends a START condition (S) followed by the MAX14720/MAX14750 ${ }^{12}$ C address. After the address, the master sends the register address of the register that is to be programmed. The master then ends communication by issuing a STOP condition (P) to relinquish control of the bus, or a REPEATED START condition (Sr) to communicate to another I2C slave. See Figure 5.

Table 26. I2C Slave Addresses

ADDRESS FORMAT	HEX	BINARY
7-Bit Slave ID	0×2 A	0101010
Write Address	0×54	01010100
Read Address	0×55	01010101

Slave Address

Set the Read/Write bit high to configure the devices to read mode (Table 26). Set the Read/Write bit low to configure the MAX14720/MAX14750 to write mode. The address is the first byte of information sent to the MAX14720/MAX14750 after the START condition.

Bit Transfer

One data bit is transferred on the rising edge of each SCL clock cycle. The data on SDA must remain stable during the high period of the SCL clock pulse. Changes in SDA while SCL is high and stable are considered control signals (see the Start, Stop, And Repeated Start Conditions section). Both SDA and SCL remain high when the bus is not active.

Single-Byte Write

In this operation, the master sends an address and two data bytes to the slave device (Figure 6). The following procedure describes the single byte write operation:

1) The master sends a START condition
2) The master sends the 7 -bit slave address plus a write bit (low)
3) The addressed slave asserts an ACK on the data line
4) The master sends the 8 -bit register address
5) The slave asserts an ACK on the data line only if the address is valid (NAK if not)
6) The master sends 8 data bits
7) The slave asserts an ACK on the data line
8) The master generates a STOP condition

Figure 5. $I^{2} \mathrm{C}$ START, STOP, and REPEATED START Conditions

WRITE SINGLE BYTE

[^1]Figure 6. Write Byte Sequence

Burst Write

In this operation, the master sends an address and multiple data bytes to the slave device (Figure 7). The slave device automatically increments the register address after each data byte is sent, unless the register being accessed is 0×00, in which case the register address remains the same. The following procedure describes the burst write operation:

1) The master sends a START condition
2) The master sends the 7-bit slave address plus a write bit (low)
3) The addressed slave asserts an ACK on the data line
4) The master sends the 8-bit register address
5) The slave asserts an ACK on the data line only if the address is valid (NAK if not)
6) The master sends eight data bits
7) The slave asserts an ACK on the data line
8) Repeat 6 and 7 N-1 times
9) The master generates a STOP condition

Single Byte Read

In this operation, the master sends an address plus two data bytes and receives one data byte from the slave device (I2C Register Descriptions). The following procedure describes the single byte read operation:

1) The master sends a START condition.
2) The master sends the 7-bit slave address plus a write bit (low).
3) The addressed slave asserts an ACK on the data line.
4) The master sends the 8-bit register address.
5) The slave asserts an ACK on the data line only if the address is valid (NAK if not).
6) The master sends a REPEATED START condition.
7) The master sends the 7-bit slave address plus a read bit (high).
8) The addressed slave asserts an ACK on the data line.
9) The slave sends eight data bits.
10) The master asserts a NACK on the data line.
11) The master generates a STOP condition.

Figure 7. Burst Write Sequence

Figure 8. Read Byte Sequence

Burst Read

In this operation, the master sends an address plus two data bytes and receives multiple data bytes from the slave device (Figure 9). The following procedure describes the burst byte read operation:

1) The master sends a START condition
2) The master sends the 7-bit slave address plus a write bit (low)
3) The addressed slave asserts an ACK on the data line
4) The master sends the 8-bit register address
5) The slave asserts an ACK on the data line only if the address is valid (NAK if not)
6) The master sends a REPEATED START condition
7) The master sends the 7-bit slave address plus a read bit (high)
8) The slave asserts an ACK on the data line
9) The slave sends eight data bits
10) The master asserts an ACK on the data line
11) Repeat 9 and 10 N-2 times
12) The slave sends the last eight data bits
13) The master asserts a NACK on the data line
14) The master generates a STOP condition

Acknowledge Bits

Data transfers are acknowledged with an acknowledge bit (ACK) or a not-acknowledge bit (NACK). Both the master and the MAX14720/MAX14750 generate ACK bits. To generate an ACK, pull SDA low before the rising edge of the ninth clock pulse and hold it low during the high period of the ninth clock pulse (Figure 10). To generate a NACK, leave SDA high before the rising edge of the ninth clock pulse and leave it high for the duration of the ninth clock pulse. Monitoring for NACK bits allows for detection of unsuccessful data transfers.

Figure 9. Burst Read Sequence

Figure 10. Acknowledge

Table 27. Register Bit Default Values

REGISTER BITS	MAX14750A	MAX14750B	MAX14750C	MAX14720A	MAX14720B	MAX14720C	MAX14720D	MAX14720E	MAX14720F
BoostISet[2:0]	100 mA	150 mA	100 mA	100 mA	350 mA				
BoostVSet[4:0]	3.3 V	3.5 V	3.3 V	4.5 V	3.2 V				
BBBUVLOSel	BIN								
LDOUVLOSel	LIN	LIN	BIN	BIN	BIN	LIN	LIN	BIN	LIN
BuckVSet[5:0]	1.2 V	1.8 V	1.25 V	1.2 V	1.8 V	1.2 V	1.8 V	1.8 V	1.8 V
BuckISet[2:0]	300 mA	300 mA	150 mA	300 mA	300 mA	50 mA	150 mA	50 mA	300 mA
BuckCfg	Burst								
Bucklnd	$2.2 \mu \mathrm{H}$								
BuckHysOff	Lower Ripple								
BuckMinOT	Lower Ripple								
Bucklnteg	Higher DC Accuracy	Higher DC Accuracy	Higher DC Accuracy	Higher DC Accuracy	Higher DC Accuracy	Higher DC Accuracy	Higher DC Accuracy	Higher DC accuracy	Higher DC accuracy
I2CAdd	0101010	0101010	0101010	0101010	0101011	0101010	0101011	0101011	0101011
StayOn	Stay On	Off after 5s	Stay On	Stay On	Stay On				
LDOVSet[4:0]	1.8 V	1.2 V	1.8 V						
BoostSeq[2:0]	HVEN	HVEN	HVEN	BoostEn[1:0]	BoostEn[1:0]	BoostEn[1:0]	BoostEn[1:0]	BoostEn[1:0]	0\%
BoostInd	$4.7 \mu \mathrm{H}$								
BuckSeq[2:0]	BEN	BEN	BEN	50\%	50\%	25\%	50\%	50\%	BuckEn[1:0]
BuckFst	Zero								
LDOSeq[2:0]	LEN	LEN	LEN	50\%	LDOEn[1:0]	50\%	Always	LDOEn[1:0]	LDOEn[1:0]
LDOMode	LDO	LDO	LDO	LDO	Load Switch	LDO	LDO	Switch	Switch
SWSeq[2:0]	SWEN	SWEN	SWEN	0\%	0\%	0\%	0\%	Always	SWEn[1:0]
SWSoftStart	None	None	20 mA (type) for 60ms	25 mA (typ) for 60 ms	$25 \mathrm{~mA} \text { (typ) }$ for 60 ms	20 mA (typ) for 60ms	20 mA (typ) for 60 ms	20 mA (typ) for 60ms	20 mA (typ) for 60 ms
BCVTm[1:0]	Skip	10 ms	Skip						
OCVTm[1:0]	Skip	10 ms	Skip						
LCVTm[1:0]	Skip	10 ms	Skip						
LDOPasDSC	Off								
LDOActDSC	Off	Active	Off						
BatlmpCur	OmA	OmA	OmA	OmA	0 mA	0 mA	0 mA	8 mA	0 mA
PwrRstCfg[3:0]	Pin Enable	Pin Enable	Pin Enable	$\overline{\mathrm{KIN}}$	$\overline{\mathrm{KIN}}$	$\overline{\mathrm{KIN}}$	$\overline{\mathrm{KIN}}$	$\overline{\mathrm{KIN}}$	$\overline{\mathrm{KIN}}$
SftRstCfg	Hold Regs	Hold Regs	Reset Regs	Hold Regs					
PFNPUDCfg	Disabled	Disabled	Disabled	Enabled	Enabled	Enabled	Enabled	Enabled	Enabled
BootDly[1:0]	80 ms	80 ms	80 ms	120 ms	120 ms	220 ms	120 ms	120 ms	120 ms
StartOff	Power On	Power On	Remain Off	Remain Off	Remain Off	Power On	Remain Off	Power On	Remain Off
GlbPasDsc	Disabled	Disabled	Disabled	Disabled	Disabled	Enabled	Disabled	Disabled	Disabled
BoostHysOff	More Efficient								

Table 27. Register Bit Default Values (continued)

REGISTER BITS	MAX14750A	MAX14750B	MAX14750C	MAX14720A	MAX14720B	MAX14720C	MAX14720D	MAX14720E	MAX14720E
BoostPasDsc	Off								
BoostActDsc	Off	Active	Off						
BuckPasDsc	Off								
BuckActDsc	Off	Active	Off						
BuckFScl	Zero	One	One						
CIkDivEna	Disabled								
CIkDivSet[6:0]	0	0	0	0	0	0	0	0	0
BatZUVLO	Disabled	Enabled	Disabled						

Table 28. Register Default Values

REGISTER ADDRESS	REGISTERNAME	DEFAULT VALUES							MAX14720E	MAX14720F
		MAX14750A	MAX14750B	MAX14750C	MAX14720A	MAX14720B	MAX14720C	MAX14720D		
0x00	Chipld	0×01	0×01	0x01	0×01					
0x01	ChipRev	0×01	0x01	0×01	0×02	0×01				
0x02	Reserved	0×00	0x00	0x00	0×00	0×00	0x00	0x00	0x00	0×00
0x03	BoostCDiv	0x00	0x00	0x00	0x00	0×00	0x00	0x00	0x00	0×00
0x04	BoostISet	0x02	0x02	0x02	0x02	0x02	0x03	0x02	0x02	0x07
0x05	BoostVSet	0x08	0x08	0x08	0x08	0×08	$0 \times 0 \mathrm{~A}$	0x08	0x14	0×07
0x06	BoostCfg	$0 \times C 0$	$0 \times C 0$	$0 \times C 0$	0xE0	0xE0	0xE0	0xE0	0xE0	0×40
0x07	BuckVSet	0x08	0x20	$0 \times 0 \mathrm{~A}$	0x08	0×20	0x08	0×20	0x20	0x20
0x08	BuckCfg	$0 \times C 0$	$0 \times C 0$	$0 \times \mathrm{CO}$	0×80	0×80	0×60	0×80	0x80	0xE0
0x09	BucklSet	$0 \times A 7$	0×47	0x47	0xA7	0×47	0x07	0×47	0x07	0xA7
$0 \times 0 \mathrm{~A}$	LDOVSet	0x09	0x03	0x09	0x09	0x09	0x09	0×09	0x09	0x09
$0 \times 0 \mathrm{~B}$	LDOCfg	$0 \times C 0$	$0 \times C 0$	$0 \times \mathrm{CO}$	0x80	0xE1	0x80	0x20	0xE9	0xE1
$0 \times 0 \mathrm{C}$	SwitchCfg	$0 \times C 0$	$0 \times C 0$	$0 \times \mathrm{C} 1$	0×41	0×41	0×41	0×41	0×21	0xE1
$0 \times 0 \mathrm{D}$	BatTime	0x00	0x00	0x00	0×00	0×00	0x00	0x00	0x19	0×00
$0 \times 0 \mathrm{E}$	BatCfg	0x00	0x00	0x00	0×00	0×00	0x00	0×00	0x06	0×00
0x0F	BatBCV	0x00	0×00							
0x10	BatOCV	0x00	0x00	0x00	0x00	0×00	0x00	0×00	0x00	0×00
0x11	BatLCV	0x00	0x00	0x00	0x00	0×00	0x00	0x00	0x00	0×00
0×12	Reserved	0×00	0x00	0x00	0x00	0×00	0x00	0×00	0x00	0×00
0×13	Reserved	0×00	0x00	0x00	0x00	0×00	0x00	0x00	0x00	0×00
0×14	Reserved	0×00	0x00	0x00	0×00	0×00	0x00	0x00	0x00	0×00
0x15	Reserved	0×00	0x00	0x00	0×00	0×00	0x00	0x00	0x00	0×00
0×16	Reserved	0x00	0x00	0x00	0x00	0×00	0x00	0x00	0x00	0×00
0x17	Reserved	0×00	0x00	0×00	0×00	0×00	0x00	0×00	0×00	0×00
0×18	Reserved	0×34	0x34	0×34	0x34	0×34				

Table 28. Register Default Values (continued)

REGISTER ADDRESS	REGISTERNAME	DEFAULT VALUES							MAX14720E	MAX14720F
		MAX14750A	MAX14750B	MAX14750C	MAX14720A	MAX14720B	MAX14720C	MAX14720D		
$0 \times 1 \mathrm{~A}$	BootCfg	0×00	0×00	0x08	0x65	0x65	0x66	0x65	0x65	0×65
$0 \times 1 \mathrm{~B}$	PinStat	0x00	0×00							
$0 \times 1 \mathrm{C}$	BBBExtra	0×00	0×00	0x00	0x00	0x00	0x00	0x00	0x23	0×01
$0 \times 1 \mathrm{D}$	HandShk	0×01	0×01	0x81	0x81	0x81	0x40	0x81	0x01	0×81
0x1E	UVLOCfg	0x02	0x02	0x03	0x03	0x03	0x02	0x02	0x03	0×02
0x1F	PWROFF	0x00								

Typical Application Circuits

Figure 11. Lithium Coin Cell

Typical Application Circuits (continued)

Figure 12. Removable Li+ Rechargeable

Typical Application Circuits (continued)

Figure 13. Always-On Coin Cell

Typical Application Circuits (continued)

Figure 14. Companion Li+ Rechargeable

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX14720AEWA +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	25 WLP
MAX14720AEWA +T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	25 WLP
MAX14720BEWA +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	25 WLP
MAX14720BEWA +T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	25 WLP
MAX14720CEWA +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	25 WLP
MAX14720CEWA +T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	25 WLP
MAX14720DEWA +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	25 WLP
MAX14720DEWA+T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	25 WLP
MAX14720EEWA +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	25 WLP
MAX14720EEWA+T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	25 WLP
MAX14720FEWA +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	25 WLP
MAX14720FEWA +T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	25 WLP
MAX14750AEWA +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	25 WLP
MAX14750AEWA+T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	25 WLP
MAX14750BEWA+	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	25 WLP
MAX14750BEWA+T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	25 WLP
MAX14750CEWA+	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	25 WLP
MAX14750CEWA+T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	25 WLP

+Denotes a lead(Pb)-free/RoHS-compliant package.
$T=$ Tape and reel.

Chip Information

PROCESS: BiCMOS

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	12/15	Initial release	-
1	2/16	Worst-Case Accuracy of Single $V_{C C}$ Measurement spec updated in Electrical Characteristics table	8
2	8/16	General updates	16, 21, 31-33
3	3/17	Updated Table 27, Table 28, and updated Ordering Informaiton table	31-33, 37
4	5/17	Removed future product designations for MAX14720CEWA+, MAX14720CEWA+T, MAX14720DEWA+, and MAX14720DEWA+T in Ordering Informaiton table	37
5	5/17	Removed future product designations for MAX14720BEWA + , MAX14720BEWA + T, MAX14750BEWA+, and MAX14750BEWA+T	37
6	10/17	Updated Tables 27 and 28, and added MAX14750CEWA+ and MAX14750CEWA+T as future products to the Ordering Information table.	32-33, 38
7	3/18	Updated the Ordering Information table.	38
8	7/18	Updated Detailed Description, Figure 1, Tables 27 and 28, Figure 11; added Figure 2 and renumbered figures; added MAX14720EEWA+ and MAX14720EEWA+T as future products to the Ordering Information table.	$\begin{gathered} 15-16,32-34 \\ 38 \end{gathered}$
9	8/18	Removed future product designation from MAX14720EEWA+ and MAX14720EEWA+T in the Ordering Information table.	39
10	4/19	Updated Figure 1 and 2; added overbar for $\overline{\text { KIN }}$; moved "(MAX14720,BatZUVLO Enabled Only)" from Power Sequencing to Battery Impedence Measurement; corrected Slave Address in Table 26	$\begin{gathered} 10,16,18 \\ 27,30 \end{gathered}$
11	2/20	Updated Figures 1 and 2, Tables 24 and 27	16, 29, 33
12	1/22	Added MAX14720FEWA+ and MAX14720FEWA+T to the Ordering Information table, Table 27, and Table 28	33-35, 39

[^0]: Note: All registers reset to default value on hard and soft reset.
 Reserved Bits: Must not be modified from their default states to ensure proper operation.
 Bolded Names: Bits default value can be factory configured by OTP. Bolded bits with asterisk are set by OTP only. *Read-only
 **Bits autoreset at the end of impedance measurement (either completed or aborted).

[^1]: \square FROM MASTER TO SLAV \square FROM SLAVE TO MASTER

