DS1631 Evaluation System

General Description
The DS1631 evaluation system (EV system) demonstrates the DS1631 high-precision digital thermometer and thermostat. The DS1631 EV system consists of the DS1631 evaluation kit (EV kit) and the USB2PMB2 adapter board. Windows XP® and Windows® 7/8/8.1/10-compatible software provides a user-friendly interface that demonstrates the features of the DS1631.

The DS1631 EV kit comes with the 8-pin µMAX DS1631AU+ installed.

Features
● 2 x 6-Pin Pmod™ Compatible Connector (I²C)
● Proven PCB Layout
● Fully Assembled and Tested
● Windows XP, Windows 7/8/8.1/10 Compatible Software

Quick Start

Required Equipment
● DS1631 EV system (USB cable included)
● Windows PC
● Voltmeter

Note: In the following sections, software-related items are identified by bolding. Text in bold refers to items directly from the EV kit software. Text in bold and underlined refers to items from the Windows operating system.

Procedure
The EV kit is fully assembled and tested. Follow the steps below to verify board operation:

1) Install the DS1631GUISetup.msi software on your computer.
2) Align the X2 connector of the USB2PMB2 with the J1 connector of the DS1631 EV kit.
3) Connect the voltmeter between the TOUT and GND test points.
4) Connect the USB cable from the PC to the X1 connector of the USB2PMB2 board.
5) Open the EV kit GUI, DS1631EVKit.exe (Figure 1).
6) Click the Scan Adapters button. Then select the option PMODxxxxxx (where xxxxxx is numeric) and click the Connect button.
7) Start evaluating the DS1631 by clicking the Sample Continuously button.

Ordering Information appears at end of data sheet.

Windows and Windows XP are registered trademarks and registered service marks of Microsoft Corporation.
Pmod is a trademark of Digilent Inc.
General Description of Software
The main window of the DS1631 EV kit software contains controls to evaluate the DS1631 IC.

Configuration
The Configuration groupbox allows control of various DS1631 options such as conversion resolution and time, TOUT polarity, and conversion mode. It also provides information about conversion status, EEPROM activity, and thermostat activity. Select the appropriate controls to enable each feature.

Resolution
Use the Conversion Resolution drop-down list to select between 9, 10, 11, and 12-bit resolution. The Conversion Time dropdown list allows the user to adjusts the sampling rate for each resolution.

TOUT Polarity
Check the TOUT Polarity dropdown list for active-high or active-low TOUT.

Conversion Mode
The Conversion Mode dropdown list allows the user to select between continuous and one-shot conversions.

Address
The DS1631’s slave address is determined by the logic state of the A_ pins. The GUI allows controlling the states of the A_ pins by selecting the appropriate item within the dropdown list and setting the appropriate bits in the control byte of the I2C command.

Temperature
The hexadecimal code and the converted temperature are displayed within the Register Read/Write groupbox.

Figure 1. DS1631 EV Kit Main Window
Register Read/Write
Within the Register Read/Write groupbox, the user can start and stop conversions, read temperature, access high and low temperature thresholds, and software POR. Press the Start Convert T button when the desired configuration is set. Press the Stop Convert T button during continuous conversion mode. The Read Temperature button reads the last converted value in the 2-byte temperature register. For the temperature thresholds, enter in the 2-byte value in hexadecimal or °C within the TH and TL edit boxes. When the desired values are entered, click the corresponding Write button to the right. Click the Sample Continuously button or One-Shot Read button. Observe the temperature on the History plot.

Temperature Flags
A green THF indicator displays when a measured temperature has not exceeded the value stored in the TH register since power-up. A red THF indicator displays when a measured temperature has been higher than the value stored in the TH register.

A green TLF indicator displays when a measured temperature has not been lower than the value stored in the TL register since power-up. A red TLF indicator displays when a measured temperature has been lower than the value stored in the TL register.

General Description of Hardware
The DS1631 EV system demonstrates the DS1631, high-precision digital thermometer and thermostat. The USB2PMB2 module and the EV kit completes the system. The USB2PMB2 act as the master and generates all the I²C and I/O communication.

User-Supplied I²C and I/O
To evaluate the EV kit with a user-supplied I²C bus, connect a Pmod master module to the J1 connector of the EV kit. If the master does not have a Pmod-compatible connector, then make connections directly to the SCL, SDA, A0, A1, and A2 test points. Make sure the return ground is the same as the DS1631.

User-Supplied VDD
The DS1631 is powered through USB by default when a Pmod-compatible master module is connected to the J1 connector of the EV kit. For a user-supplied VDD, a Pmod master module is not allowed on the J1 connector. The user will need to apply a voltage between +2.7V and +5.5V at the VDD test point.
DS1631 EV System Bill of Materials

<table>
<thead>
<tr>
<th>ITEM</th>
<th>REF_DES</th>
<th>DNI/DNP</th>
<th>QTY</th>
<th>MFG PART #</th>
<th>MANUFACTURER</th>
<th>VALUE</th>
<th>DESCRIPTION</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A0-A2, SCL, SDA, TOUT</td>
<td>6</td>
<td>5007</td>
<td>KEYSSTONE</td>
<td>N/A</td>
<td>TEST POINT; PIN DIA = 0.125IN; TOTAL LENGTH = 0.35IN; BOARD HOLE = 0.063IN; WHITE; PHOSPHOR BRONZE WIRE SILVER PLATE FINISH;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>C1</td>
<td>1</td>
<td>GCJ188R71H104KA12; GCMS88R71H104AK; CG33E2X71R1H104K060AE</td>
<td>MURATA; TDK</td>
<td>0.1UF</td>
<td>0.1UF; CAPACITOR; SMT (0603); CERAMIC CHIP; 0.1UF; 50V; TOL=10%; TG=-55 DEGC TO +125 DEGC; TC=xTR; AUTO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>GND</td>
<td>1</td>
<td>5056</td>
<td>KEYSSTONE</td>
<td>N/A</td>
<td>TEST POINT; PIN DIA = 0.125IN; TOTAL LENGTH = 0.35IN; BOARD HOLE = 0.063IN; BLACK; PHOSPHOR BRONZE WIRE SILVER PLATE FINISH;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>J1</td>
<td>1</td>
<td>TSW-106-08-S-D-RA</td>
<td>SAMTEC TSW-106-08-S-D-RA</td>
<td>CONNECTOR; THROUGH HOLE; DOUBLE ROW; RIGHT ANGLE; 12PINS;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>R1, R2</td>
<td>2</td>
<td>CRCW0603K0470FK</td>
<td>VISHAY DALE</td>
<td>4.7K</td>
<td>4.7K; RESISTOR; 0603; 4.7K; 1%; 100PPM; 0.10W; THICK FILM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>U1</td>
<td>1</td>
<td>DS1631AU+</td>
<td>MAXIM</td>
<td>DS1631AU+</td>
<td>IC; DTHM; HIGH-PRECISION DIGITAL THERMOMETER AND THERMOSTAT; UMAX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>VDD</td>
<td>1</td>
<td>5055</td>
<td>KEYSSTONE</td>
<td>N/A</td>
<td>TEST POINT; PIN DIA = 0.125IN; TOTAL LENGTH = 0.35IN; BOARD HOLE = 0.063IN; RED; PHOSPHOR BRONZE WIRE SILVER PLATE FINISH;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>PCB</td>
<td>1</td>
<td>MAXDS1631</td>
<td>MAXIM</td>
<td>PCB</td>
<td>PCB Board; DS1631 EVALUATION KIT</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DS1631 EV System Schematic
DS1631 Evaluation System

Evaluates: DS1631

DS1631 EV System PCB Layout Diagrams

DS1631 EV System—Top Silkscreen

DS1631 EV System—Top

DS1631 EV System—Bottom

Ordering Information

<table>
<thead>
<tr>
<th>PART</th>
<th>TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS1631EVSYS1#</td>
<td>EV System</td>
</tr>
<tr>
<td>DS1631EVKIT#</td>
<td>EV Kit</td>
</tr>
<tr>
<td>USB2PMB2#</td>
<td>Adapter Board</td>
</tr>
</tbody>
</table>

#Denotes RoHS compliant.
Revision History

<table>
<thead>
<tr>
<th>REVISION NUMBER</th>
<th>REVISION DATE</th>
<th>DESCRIPTION</th>
<th>PAGES CHANGED</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>7/18</td>
<td>Initial release</td>
<td>—</td>
</tr>
</tbody>
</table>