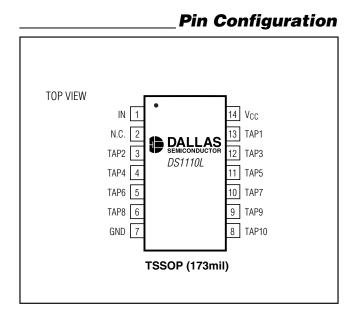
General Description


The DS1110L 10-tap delay line is a 3V version of the DS1110. It has 10 equally spaced taps providing delays from 10ns to 500ns. The DS1110L series delay lines provide a nominal accuracy of ±5% or ±2ns, whichever is greater, at 3.3V and +25°C. The DS1110L is characterized to operate from 2.7V to 3.6V. The DS1110L produces both leading- and trailing-edge delays with equal precision. The device is offered in a standard 14-pin TSSOP.

Applications

Communications Equipment Medical Devices Automated Test Equipment PC Peripheral Devices

Features

- All-Silicon Delay Line
- 3V Version of the DS1110
- 10 Taps Equally Spaced
- Delays Are Stable and Precise
- Leading- and Trailing-Edge Accuracy
- Delay Tolerance ±5% or ±2ns, Whichever Is Greater, at 3.3V and +25°C
- Economical
- Low-Profile 14-Pin TSSOP
- Low-Power CMOS
- TTL/CMOS Compatible
- Vapor Phase and IR Solderable
- Fast-Turn Prototypes
- Delays Specified Over Commercial and Industrial **Temperature Ranges**
- Custom Delays Available

TOTAL PIN-PART TEMP RANGE DELAY PACKAGE (ns) * DS1110LE-100 -40°C to +85°C 14 TSSOP (173mil) 100 DS1110LE-125 -40°C to +85°C 14 TSSOP (173mil) 125 DS1110LE-150 -40°C to +85°C 14 TSSOP (173mil) 150 DS1110LE-175 -40°C to +85°C 14 TSSOP (173mil) 175 DS1110LE-200 -40°C to +85°C 14 TSSOP (173mil) 200 DS1110LE-250 -40°C to +85°C 14 TSSOP (173mil) 250 DS1110LE-300 -40°C to +85°C 14 TSSOP (173mil) 300 DS1110LE-350 -40°C to +85°C 14 TSSOP (173mil) 350 DS1110LE-400 -40°C to +85°C 14 TSSOP (173mil) 400 DS1110LE-450 -40°C to +85°C 14 TSSOP (173mil) 450

Ordering Information

*Custom delays are available.

DS1110LE-500

-40°C to +85°C

Maxim Integrated Products 1

14 TSSOP (173mil)

500

For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

ABSOLUTE MAXIMUM RATINGS

Voltage on Any Pin Relative to Ground-0.5V to +6.0V Operating Temperature Range-40°C to +85°C

Storage Temperature Range	55°C to +125°C
Soldering Temperature	See IPC/JEDEC J-STD-020A

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

(-40°C to +85°C, V_{CC} = 2.7V to 3.6V.)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
Supply Voltage	Vcc	(Note 1)	2.7	3.3	3.6	V
High-Level Input Voltage	VIH	(Note 1)	2.2		V _{CC} + 0.3	V
Low-Level Input Voltage	VIL	(Note 1)	-0.3		+0.8	V
Input Leakage Current	li	$0V \le V_I \le V_{CC}$	-1.0		+1.0	μΑ
Active Current	Icc	V _{CC} = max, period = min (Note 2)		40	150	mA
High-Level Output Current	ЮН	$V_{CC} = min, V_{OH} = 2.3V$			-1.0	mA
Low-Level Output Current	IOL	$V_{CC} = min, V_{OL} = 0.5V$	12			mA

AC ELECTRICAL CHARACTERISTICS

(-40°C to +85°C, V_{CC} = 2.7V to 3.6V.)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
Input Pulse Width	twi	(Note 6)	10% of tap 10			ns
Input to Tap Delay (Delays ≤ 40ns)		+25°C, 3.3V (Notes 3, 5, 6, 7, 9)	-2	Table 1	+2	
	tplh tphl	0°C to +70°C (Notes 4–7)	-3	Table 1	+3	ns
	4PHL	-40°C to +85°C (Notes 4–7)	-4	Table 1	+4	
Input to Tap Delay (Delays > 40ns)		+25°C, 3.3V (Notes 3, 5, 6, 7, 9)	-5	Table 1	+5	
	tPLH	0°C to +70°C (Notes 4–7)	-8	Table 1	+8	%
	^t PHL	-40°C to +85°C (Notes 4–7)	-13	Table 1	+13	
Power-Up Time	tpu				100	ms
Input Period	Period	(Note 8)	2 (t _{WI})			ns

CAPACITANCE

 $(T_A = +25^{\circ}C.)$

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
Input Capacitance	CIN			5	10	рF

Note 1: All voltages are referenced to ground.

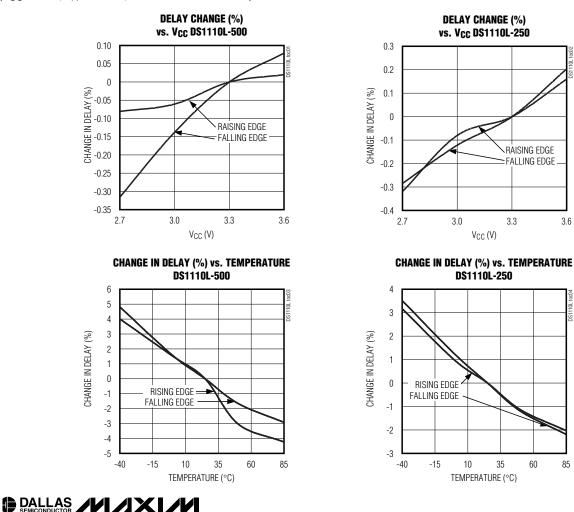
Note 2: Measured with outputs open.

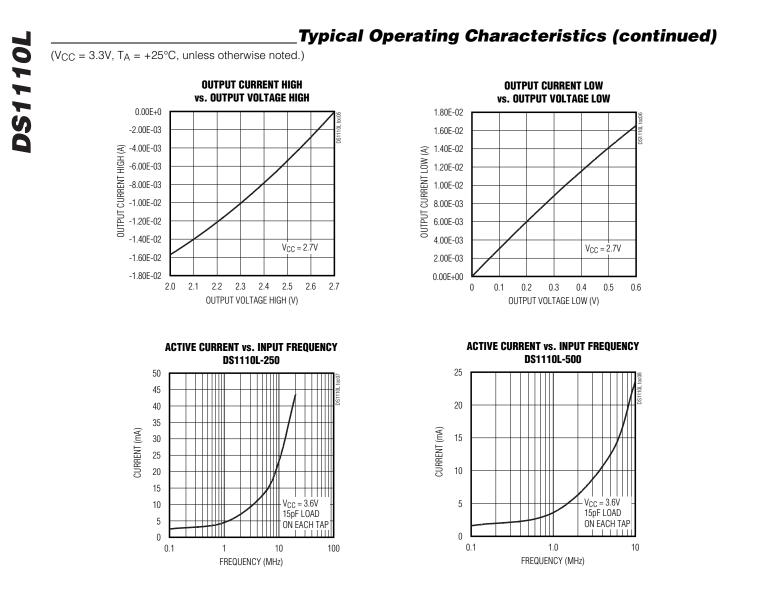
Note 3: Initial tolerances are \pm with respect to the nominal value at +25°C and V_{CC} = 3.3V for both leading and trailing edges.

Note 4: Temperature and voltage tolerances are with respect to the nominal delay value over stated temperature range and a 2.7V to 3.6V range.

Note 5: Intermediate delay values are available on a custom basis.

Note 6: See Test Conditions section.


Note 7: All tap delays tend to vary unidirectionally with temperature or voltage changes. For example, if tap 1 slows down, all other taps also slow down; tap 3 can never be faster than tap 2.


Note 8: Pulse width and period specifications may be exceeded; however, accuracy is application sensitive (decoupling, layout, etc.).

Note 9: For Tap 1 delays greater than 20ns, the tolerance is ± 3 ns or ± 5 %, whichever is greater.

 $(V_{CC} = 3.3V, T_A = +25^{\circ}C, unless otherwise noted.)$

Typical Operating Characteristics

_Pin Description

PIN	NAME	FUNCTION
1	IN	Input
2	N.C.	No Connection
7	GND	Ground
13, 3, 12, 4, 11, 5, 10, 6, 9, 8	Tap 1–Tap 10	Tap Output Number
14	VCC	2.7V to 3.6V
4		


4

Detailed Description

The DS1110L 10-tap delay line is a 3V version of the DS1110. It has 10 equally spaced taps providing delays from 10ns to 500ns. The device is offered in a standard 14-pin TSSOP. The DS1110L series delay lines provide a nominal accuracy of ±5% or ±2ns, whichever is greater, at 3.3V and +25°C. The DS1110L is characterized to operate from 2.7V to 3.6V. The DS1110L reproduces the input-logic state at the tap 10 output after a fixed delay as specified by the dash-number suffix of the part number (Table 1). The DS1110L produces both leading- and trailing-edge delays with equal precision. Each tap is capable of driving up to 10 74LS-type loads. Dallas Semiconductor can customize standard products to meet specific needs. Figure 1 is the DS1110_L logic diagram and Figure 2 shows the timing diagram for the silicon delay line.

Table 1. Part Number by Delay (tPHL, tPLH)

PART	TOTAL DELAY (ns)	DELAY/TAP (ns)
DS1110LE-100	100	10
DS1110LE-125	125	12.5
DS1110LE-150	150	15
DS1110LE-175	175	17.5
DS1110LE-200	200	20
DS1110LE-250	250	25
DS1110LE-300	300	30
DS1110LE-350	350	35
DS1110LE-400	400	40
DS1110LE-450	450	45
DS1110LE-500	500	50

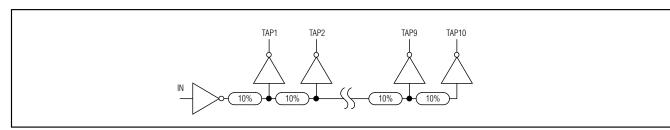


Figure 1. Logic Diagram

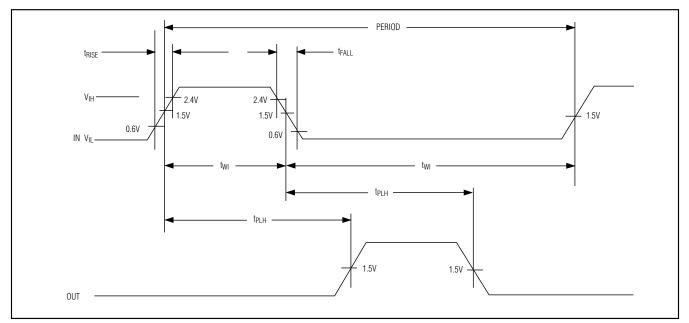


Figure 2. Timing Diagram: Silicon Delay Line

DALLAS JULIX

5

Terminology

Period: The time elapsed between the leading edge of the first pulse and the leading edge of the following pulse.

twi (Pulse Width): The elapsed time on the pulse between the 1.5V point on the leading edge and the 1.5V point on the trailing edge, or the 1.5V point on the trailing edge and the 1.5V point on the leading edge.

TRISE (Input Rise Time): The elapsed time between the 20% and the 80% point on the leading edge of the input pulse.

tFALL (Input Fall Time): The elapsed time between the 80% and the 20% point on the trailing edge of the input pulse.

 t_{PLH} (Time Delay Rising): The elapsed time between the 1.5V point on the leading edge of the input pulse and the 1.5V point on the leading edge of any tap output pulse.

tPHL (Time Delay, Falling): The elapsed time between the 1.5V point on the trailing edge of the input pulse and the 1.5V point on the trailing edge of any tap output pulse.

Test Setup Description

Figure 3 illustrates the hardware configuration used for measuring the timing parameters on the DS1110L. A precision pulse generator under software control produces the input waveform. Time delays are measured by a time interval counter (20ps resolution) connected

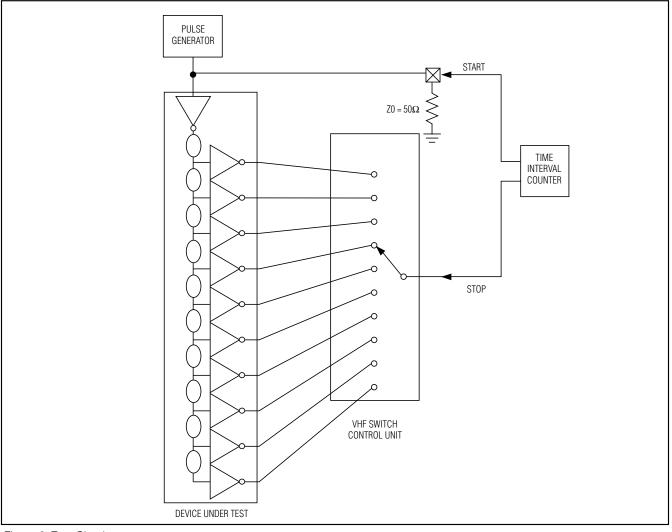


Figure 3. Test Circuit

between the input and each tap. Each tap is selected and connected to the counter by a VHF switch-control unit. All measurements are fully automated, with each instrument controlled by a central computer over an IEEE-488 bus.

Output

Each output is loaded with the equivalent of one 450Ω resistor in parallel with a 15pF capacitor. Delay is measured at the 1.5V level on the rising and falling edge.

Table 2. Test Conditions

INPUT	CONDITION
Ambient Temperature	+25°C ±3°C
Supply Voltage (V _{CC})	3.3V ±0.1V
	High = $3.0V \pm 0.1V$
Input Pulse	$Low = 0.0V \pm 0.1V$
Source Impedance	50Ω max
Rise and Fall Time	2ns max
Pulse Width	500ns (1µs for - 500ns)
Period	1µs (2µs for - 500ns)

Note: Above conditions are for test only and do not restrict the operation of the device under other data sheet conditions.

Chip Information

TRANSISTOR COUNT: 6813

____7

Package Information

For the latest package outline information, go to www.maxim-ic. com/packages.

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.