

General Description

The MAX9374 and MAX9374A are 2.0GHz differential LVPECL-to-LVDS translators and are designed for telecom applications. They feature 250ps propagation delay. The differential output conforms to the ANSI TIA/EIA-644 LVDS standard. The inputs are biased with internal resistors such that the output is differential low when inputs are open. An on-chip VBB reference output is available for single-ended operation.

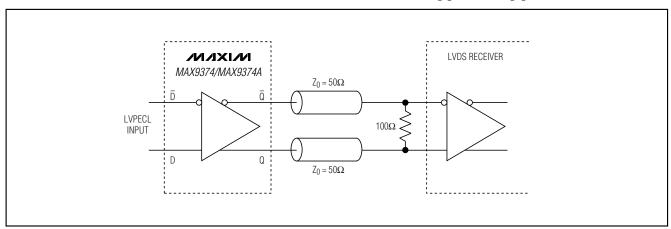
The MAX9374 is designed for low-voltage operation from a 2.375V to 2.625V power supply for use in 2.5V systems. The MAX9374A is designed for 3.0V to 3.6V operation in systems with a nominal 3.3V supply. Both devices are offered in industry-standard 8-pin SOT23 and SO packages.

Applications

Precision Clock Buffer Low-Jitter Data Repeater Central Office Clock Distribution DSLAM/DLC

Base Station Mass Storage

Features


- ♦ Guaranteed 2.0GHz Operating Frequency
- **♦** 250ps (typ) Propagation Delay
- ♦ 1.0ps RMS Jitter (typ)
- ♦ 2.375V to 2.625V Low-Voltage Supply Range (MAX9374)
- ♦ On-Chip VBB Reference for Single-Ended Input
- **♦** Output Low for Open Inputs
- ♦ Output Conforms to ANSI TIA/EIA-644 LVDS **Standard**
- ♦ ESD Protection >2.0kV (Human Body Model)
- ♦ Available in Small 8-Pin SOT23 Package

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	TOP MARK
MAX9374EKA-T	-40°C to +85°C	8 SOT23-8	AAKU
MAX9374ESA	-40°C to +85°C	8 SO	_
MAX9374AEKA-T	-40°C to +85°C	8 SOT23-8	AAKV
MAX9374AESA	-40°C to +85°C	8 SO	_

Pin Configurations/Functional Diagrams appear at end of data sheet.

Typical Application Circuit

MIXIM

Maxim Integrated Products 1

ABSOLUTE MAXIMUM RATINGS

V _{CC} to GND	4.0V
V_D , $V_{\overline{D}}$ to GND(0.3V to $V_{CC} + 0.3V$
V_D to $V_{\overline{D}}$	3.0V
VBB Sink/Source Current	1mA
Short-Circuit Duration (Q, Q to GND)	Continuous
Short-Circuit Duration (Q to Q)	Continuous
Continuous Power Dissipation ($T_A = +70$ °C)	
8-Pin SOT23 (derate 8.9mW/°C above +70	°C)714mW
8-Pin SO (derate 5.9mW/°C above +70°C).	470mW
Junction-to-Ambient Thermal Resistance	
8-Pin SOT23	+112°C/W
8-Pin SO	+170°C/W

Junction-to-Ambient Thermal Resistance with 500 LFPM Airflow	
8-Pin SOT23	+78°C/W
8-Pin SO	+99°C/W
Junction-to-Case Thermal Resistance	
8-Pin SOT23	+80°C/W
8-Pin SO	
Operating Temperature Range	40°C to +85°C
Junction Temperature	
Storage Temperature Range	65°C to +150°C
ESD Protection	
Human Body Model (D, \overline{D} , Q, \overline{Q})	2kV
Soldering Temperature (10s)	+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

 $(V_{CC}=2.375 V \text{ to } 2.625 V \text{ for MAX9374}, V_{CC}=3.0 V \text{ to } 3.6 V \text{ for MAX9374A}, 100\Omega \pm 1\%$ across outputs, $V_{ID}=0.095 V \text{ to } V_{CC}$ or 3 V, whichever is less, $V_{IHD}=1.2 V \text{ to } V_{CC}, V_{ILD}=G ND \text{ to } V_{CC}-0.095 V$, unless otherwise noted. Typical values are at $V_{IHD}=2.0 V, V_{ILD}=1.85 V, V_{CC}=3.3 V \text{ for MAX9374A}, V_{CC}=2.5 V \text{ for MAX9374A}, (Notes 1, 2)$

PARAMETER	CVMPOL	SYMBOL CONDITIONS		-40°C		+25°C			+85°C			UNITS
PARAMETER	STINIBUL	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
DIFFERENTIAL INPUT (D, \overline{D})												
High Voltage of Differential Input	VIHD	Figure 1	1.2		Vcc	1.2		Vcc	1.2		Vcc	٧
Low Voltage of Differential Input	V _{ILD}	Figure 1	GND		V _{CC} - 0.095	GND		V _{CC} - 0.095	GND		V _{CC} - 0.095	V
Single-Ended Input High Voltage	V _{IH}	V _{BB} connected to \overline{D} (V _{IL} for V _{BB} connected to D), Figure 1	V _{CC} - 1.165		Vcc	V _{CC} - 1.165		V _C C	V _{CC} - 1.165		Vcc	V
Single-Ended Input Low Voltage	VIL	V _{BB} connected to \overline{D} (V _{IH} for V _{BB} connected to D), Figure 1	VEE		V _{CC} - 1.475	VEE		V _{CC} - 1.475	VEE		V _{CC} - 1.475	V
Differential Input Voltage	V _{IHD} -	V _{CC} < 3.0V	0.1		Vcc	0.1		Vcc	0.1		Vcc	V
Dillerential input voltage	V _{ILD}	V _{CC} ≥ 3.0V	0.1		3.0	0.1		3.0	0.1		3.0	V
Input Current	I _{IN}	V _{IHMAX} , V _{ILMIN} (Note 3)	-150		150	-150		150	-150		150	μΑ
DIFFERENTIAL OUTPUT (Q, Q)												
Output High Voltage	VoH	Figure 1			1.6			1.6			1.6	V
Output Low Voltage	VoL	Figure 1	0.9			0.9			0.9			V
Differential Output Voltage	V _{OD}	Figure 1	250	350	450	250	350	450	250	350	450	mV

DC ELECTRICAL CHARACTERISTICS (continued)

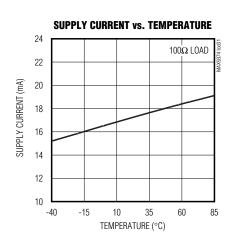
 $(V_{CC}=2.375 V~to~2.625 V~for~MAX9374,~V_{CC}=3.0 V~to~3.6 V~for~MAX9374A,~100 \Omega~\pm1\%~across~outputs,~V_{ID}=0.095 V~to~V_{CC}~or~3 V,~whichever~is~less,~V_{IHD}=1.2 V~to~V_{CC},~V_{ILD}=GND~to~V_{CC}~-0.095 V,~unless~otherwise~noted.~Typical~values~are~at~V_{IHD}=2.0 V,~V_{ILD}=1.85 V,~V_{CC}=3.3 V~for~MAX9374A,~V_{CC}=2.5 V~for~MAX9374.)~(Notes~1,~2)$

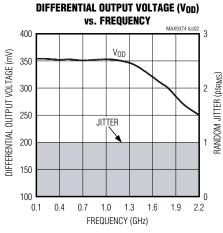
PARAMETER	SYMBOL CONDITIONS			-40°C			+25°C			+85°C		UNITS
PARAMETER	STWIBUL	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Change in V _{OD} Between Complementary Output States	ΔV _{OD}			1	25		1	25		1	25	mV
Output Offset Voltage	Vos		1.125	1.25	1.375	1.125	1.25	1.375	1.125	1.25	1.375	V
Change in VOS Between Complementary Output States	ΔVOS			3	25		3	25		3	25	mV
Output Short-Circuit Current	losc	Q or $\overline{\mathbb{Q}}$ short to GND		23	30		23	30		23	30	mA
V _{BB} AND SUPPLY												
Reference Voltage	V _{BB}	$I_{BB} = \pm 0.6 \text{mA}$ (Note 4)	V _{CC} - 1.38		V _{CC} - 1.26	V _{CC} - 1.38		V _{CC} - 1.26	V _{CC} - 1.38		V _{CC} - 1.26	V
Supply Current	Icc	(Note 5)		16	30		18	30		20	30	mA

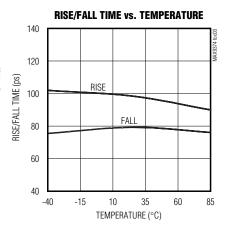
AC ELECTRICAL CHARACTERISTICS

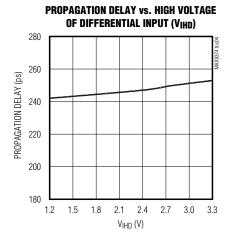
 $(V_{CC}=2.375 V \text{ to } 2.625 V \text{ for MAX9374}, V_{CC}=3.0 V \text{ to } 3.6 V \text{ for MAX9374A}, 100 \Omega \pm 1\% \text{ across outputs}, V_{IHD}-V_{ILD}=0.15 V \text{ to } V_{CC} \text{ or } 3 V$, whichever is less, $V_{IHD}=1.2 V$ to V_{CC} , $V_{ILD}=GND$ to $V_{CC}-0.15 V$, $V_{ILD}=1.6 V$, input transition time = 125ps, input duty cycle = 50%, unless otherwise noted. Typical values are at $V_{IHD}=2.0 V$, $V_{ILD}=1.85 V$, $V_{CC}=3.3 V$ for MAX9374A, $V_{CC}=2.5 V$ for MAX9374, unless otherwise noted.) (Notes 1, 6)

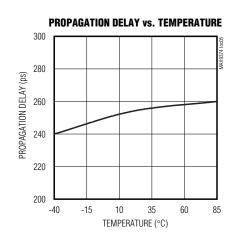
PARAMETER	SYMBOL	CONDITIONS		-40°C			+25°C			+85°C		UNITS	
PANAIVIETEN	STWIBOL	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS	
Differential Input to Differential Output Delay	tPLHD, tPHLD	Figure 1	116	240	420	128	250	403	145	260	440	ps	
Single-Ended Input to Differential Output Delay	tpLHS, tpHLS	Figure 1	126	250	430	138	250	415	155	260	450	ps	
Part-to-Part Skew	tskpp	(Note 7)			304			275			295	ps	
Added Random Jitter	+	f _{IN} = 1.0GHz, clock pattern		0.9	2		1	2		1	2	20(21.10)	
(Note 8)	t _{RJ}	^I RJ	f _{IN} = 2.0GHz, clock pattern		8.0	2		0.9	2		0.9	2	ps(RMS)
Added Deterministic Jitter (Note 8)	tDJ	f _{IN} = 2.0Gbps, 2 ²³ -1 PRBS pattern		45	75		46	75		38	75	ps(P-P)	
Operating Frequency	f _{MAX}	V _{OD} ≥ 250mV	2.0	2.2		2.0	2.2		2.0	2.2		MHz	
Output Rise/Fall Time	t _R , t _F	20% to 80%, Figure 1		92	200		91	200		90	200	ps	


AC ELECTRICAL CHARACTERISTICS (continued)


 $(V_{CC}=2.375 V \text{ to } 2.625 V \text{ for MAX9374}, V_{CC}=3.0 V \text{ to } 3.6 V \text{ for MAX9374A}, 100 \Omega \pm 1\% \text{ across outputs}, V_{IHD}-V_{ILD}=0.15 V \text{ to } V_{CC} \text{ or } 3 V$, whichever is less, $V_{IHD}=1.2 V \text{ to } V_{CC}, V_{ILD}=G ND \text{ to } V_{CC}-0.15 V, f_{IN}=1 G Hz$, input transition time = 125ps, input duty cycle = 50%, unless otherwise noted. Typical values are at $V_{IHD}=2.0 V, V_{ILD}=1.85 V, V_{CC}=3.3 V \text{ for MAX9374A}, V_{CC}=2.5 V \text{ for MAX9374}, unless otherwise noted.}) (Notes 1, 6)$


- Note 1: Measurements are made with the device in thermal equilibrium.
- Note 2: DC parameters are production tested at T_A = +25°C and guaranteed by design over the full operating temperature range.
- Note 3: Current into a pin is defined as positive. Current out of a pin is defined as negative.
- Note 4: Use VBB as a reference for inputs on the same device only.
- **Note 5:** 100Ω across the outputs, all other pins open except V_{CC} and GND.
- Note 6: Guaranteed by design and characterization. Limits are set at ±6 sigma.
- Note 7: Measured between outputs of different parts at the signal crossing points under identical conditions for a same-edge transition.
- Note 8: Device jitter added to the input signal.


Typical Operating Characteristics


 $(MAX9374A, 100\Omega \pm 1\% \text{ across outputs}, f_{IN} = 1\text{GHz}, input transition time = 125ps, input duty cycle = 50\%, V_{CC} = 3.3V, V_{IHD} = 2.0V, V_{ILD} = 1.85V, T_A = <math>+25^{\circ}$ C, unless otherwise noted.)

Pin Description

PI	N	NAME	FUNCTION
SOT23	so	NAME	FUNCTION
1	4	V _{BB}	Reference Output Voltage. Connect to the inverting or noninverting data input to provide a reference for single-ended operation. When used, bypass with a 0.01µF ceramic capacitor to V _{CC} ; otherwise, leave it open.
2	5	GND	Ground. Provide a low-impedance connection to the ground plane.
3	3	D	Inverted LVPECL Data Input. $36.5 \text{k}\Omega$ pullup to V _{CC} and $75 \text{k}\Omega$ pulldown to GND.
4	2	D	Noninverted LVPECL Data Input. 75k Ω pullup to V _{CC} and 75k Ω pulldown to GND.
5	8	Vcc	Positive Supply Voltage. Bypass V _{CC} to GND with 0.1µF and 0.01µF ceramic capacitors. Place the capacitors as close to the device as possible with the smaller value capacitor closest to the device.
6	7	Q	Noninverted LVDS Output. Typically terminate with 100Ω to $\overline{\mathbb{Q}}$.
7	6	Q	Inverted LVDS Output. Typically terminate with 100Ω to Q.
8	1	N.C.	No Connection. Not internally connected.

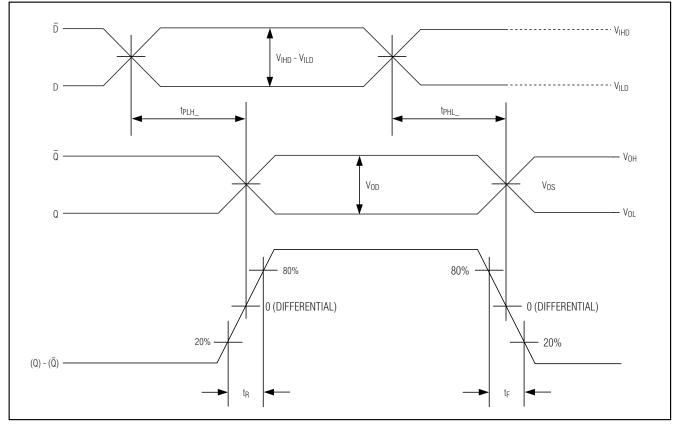


Figure 1. MAX9374/MAX9374A Timing Diagram

Detailed Description

The MAX9374/MAX9374A are 2.0GHz differential LVPECL-to-LVDS translators. The output is differential LVDS and conforms to the ANSI TIA/EIA-644 LVDS standard. The inputs are biased with internal resistors such that the output is differential low when inputs are open. An on-chip VBB reference output is available for single-ended input operation. The MAX9374 is designed for low-voltage operation from 2.375V to 2.625V in systems with a nominal 2.5V supply. The MAX9374A is designed for 3.0V to 3.6V operation in systems with a nominal 3.3V supply.

Differential LVPECL Input

The MAX9374/MAX9374A accept differential LVPECL inputs and can be configured to accept single-ended inputs through the use of the V_{BB} voltage reference output. The maximum magnitude of the differential signal applied to the input is 3.0V or VCC, whichever is less. This limit also applies to the difference between any reference voltage input and a single-ended input. Specifications for the high and low voltages of a differential input (V_{IHD} and V_{ILD}) and the differential input voltage (V_{IHD} - V_{ILD}) apply simultaneously.

Single-Ended Inputs and VBB

The differential inputs can be configured to accept a single-ended input through the use of the VBB reference voltage. A noninverting, single-ended input is produced by connecting VBB to the \overline{D} input and applying a single-ended input signal to the D input. Similarly, an inverting input is produced by connecting VBB to the D input and applying the input signal to the \overline{D} input. With a differential input configured as single ended (using VBB), the single-ended input can be driven to VCC and GND or with a single-ended LVPECL signal. Note that a single-ended input must be at least VBB $\pm 95 \mathrm{mV}$ or a differential input of at least 95 mV to switch the outputs to the VOH and VOL levels specified in the DC Electrical Characteristics table.

When using the VBB reference output, bypass it with a $0.01\mu F$ ceramic capacitor to VCC. If the VBB reference is not used, leave it unconnected. Use VBB only for inputs that are on the same device as the VBB reference.

Input Bias Resistors

Internal biasing resistors ensure a (differential) output-low condition in the event that the inputs are not connected. The inverting input (\overline{D}) is biased with a 36.5k Ω pulldown to VCC and a 75k Ω pullup to GND. The noninverting input (D) is biased with a 75k Ω pullup to VCC and 75k Ω pulldown to GND.

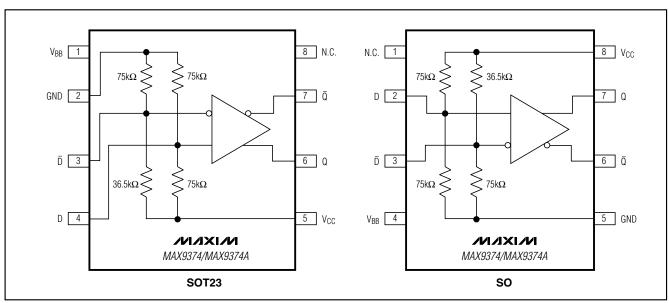
Differential LVDS Output

The differential outputs conform to the ANSI TIA/EIA-644 LVDS standard. Typically, terminate the outputs with 100Ω across Q and \overline{Q} , as shown in the *Typical Application Circuit*. The outputs are short-circuit protected.

Applications Information

Supply Bypassing

Bypass VCC to GND with high-frequency surface-mount ceramic $0.1\mu F$ and $0.01\mu F$ capacitors in parallel and as close to the device as possible, with the $0.01\mu F$ capacitor closest to the device. Use multiple parallel vias to minimize parasitic inductance. When using the VBB reference output, bypass it with a $0.01\mu F$ ceramic capacitor to VCC (if the VBB reference is not used, it can be left open).

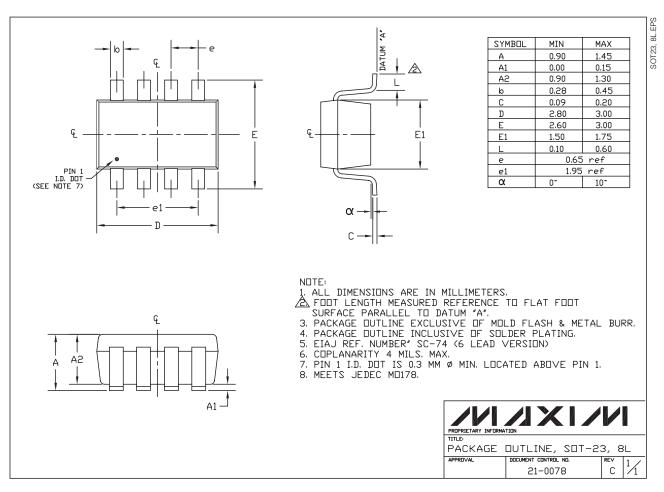

Controlled-Impedance Traces

Input and output trace characteristics affect the performance of the MAX9374/MAX9374A. Connect high-frequency input and output signals to 50Ω characteristic impedance traces. Minimize the number of vias to prevent impedance discontinuities. Reduce reflections by maintaining the 50Ω characteristic impedance through cables and connectors. Reduce skew within a differential pair by matching the electrical length of the traces.

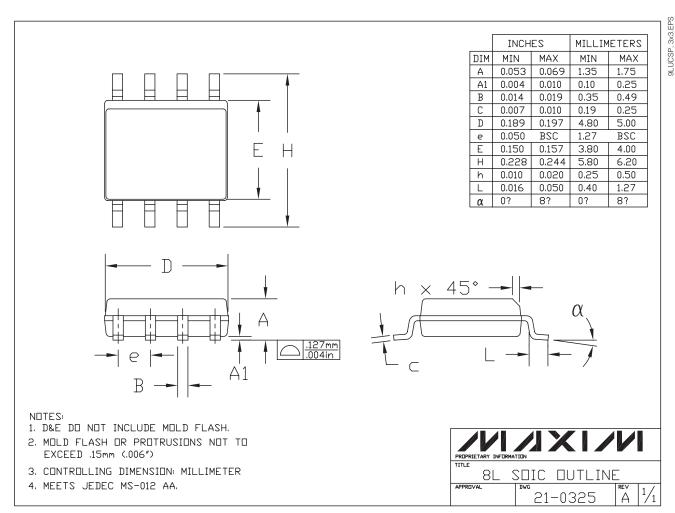
Output Termination

Terminate the outputs with 100Ω across Q and \overline{Q} as shown in the *Typical Application Circuit*. Both outputs must be terminated.

Pin Configurations/Functional Diagrams



Chip Information


TRANSISTOR COUNT: 236

PROCESS: Bipolar

Package Information

Package Information (continued)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.